Empirical models for estimating global solar radiation in Wuhan City, China

  • Shaban G. Gouda
  • Zakia Hussein
  • Shuai Luo
  • Panpan Wang
  • Hongliang Cao
  • Qiaoxia YuanEmail author
Regular Article


Seven existing models and four proposed models were calibrated and evaluated to calculate the monthly average daily global solar radiation (GSR) on a horizontal surface in Wuhan city, China, using meteorological data measured from 2006 to 2011. The results show that the sunshine duration (n) is an important parameter for estimating the GSR and adding the dew point temperature (DP) is a significant effect in humid regions especially in Wuhan. Notably, all the tested models that used only the sunshine ratio or the sunshine ratio combined with other parameters exhibited satisfactory estimation performance. Adding the maximum and minimum air temperatures to the sunshine ratio in the Chen and Li model yielded a considerable improvement over the existing models, and adding the DP in the new model resulted in the most accurate estimations of solar radiation. Additionally, using the simple linear Ångström-Prescott model was better than using the more complex Bahel model or the Ododo model. Models based on the maximum, minimum and average air temperature (Li Huashan model) and DP (Li model) exhibited poor performance. The worst performance was displayed by the Badescu model, which uses only cloud cover as a key input. Finally, we propose a strategy for selecting the most appropriate model for estimating the GSR.


  1. 1.
    G. He, H. Zhang, Y. Xu, X. Lu, Resources, Conserv. Recycl. 121, 3 (2017)CrossRefGoogle Scholar
  2. 2.
    G. He, D.M. Kammen, Renew. Energy 85, 74 (2016)CrossRefGoogle Scholar
  3. 3.
    H. Li, W. Ma, Y. Lian, X. Wang, Appl. Energy 87, 3011 (2010)CrossRefGoogle Scholar
  4. 4.
    L.F.L. Lemos, A.R. Starke, J. Boland, J.M. Cardemil, R.D. Machado, S. Colle, Renew. Energy 108, 569 (2017)CrossRefGoogle Scholar
  5. 5.
    F. Cao, H. Li, T. Yang, Y. Li, T. Zhu, L. Zhao, Renew. Energy 103, 708 (2017)CrossRefGoogle Scholar
  6. 6.
    W. Yao, C. Zhang, X. Wang, J. Sheng, Y. Zhu, S. Zhang, Energy Convers. Manag. 139, 140 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Almorox, C. Hontoria, M. Benito, Appl. Energy 88, 1703 (2011)CrossRefGoogle Scholar
  8. 8.
    H. Li, W. Ma, Y. Lian, X. Wang, L. Zhao, Renew. Energy 36, 3141 (2011)CrossRefGoogle Scholar
  9. 9.
    F. Besharat, A.A. Dehghan, A.R. Faghih, Renew. Sustain. Energy Rev. 21, 798 (2013)CrossRefGoogle Scholar
  10. 10.
    N. Samuel Chukwujindu, Renew. Sustain. Energy Rev. 78, 955 (2017)CrossRefGoogle Scholar
  11. 11.
    S.C. Nwokolo, J.C. Ogbulezie, Beni-Suef Univ. J. Basic Appl. Sci., (2017)
  12. 12.
    A. Angstrom, Quart. J. R. Meteorol. Soc. 50, 121 (1924)ADSCrossRefGoogle Scholar
  13. 13.
    J. Prescott, Trans. R. Soc. South Aust. 64, 114 (1940)Google Scholar
  14. 14.
    M.-F. Li, X.-P. Tang, W. Wu, H.-B. Liu, Energy Convers. Manag. 70, 139 (2013)CrossRefGoogle Scholar
  15. 15.
    W. Yao, Z. Li, Y. Wang, F. Jiang, L. Hu, Energy Convers. Manag. 84, 597 (2014)CrossRefGoogle Scholar
  16. 16.
    J.-L. Chen, G.-S. Li, Int. J. Climatol. 33, 487 (2013)CrossRefGoogle Scholar
  17. 17.
    X. Liu, Y. Xu, X. Zhong, W. Zhang, J.R. Porter, W. Liu, Appl. Energy 96, 327 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    X. Ye, F. Chen, Z. Hou, Proc. Eng. 121, 2149 (2015)CrossRefGoogle Scholar
  19. 19.
    X. Chen, X. Liu, D. Hu, Ecol. Indic. 50, 206 (2015)CrossRefGoogle Scholar
  20. 20.
    G. Jing, B. Yu, L. Lisheng, Energy Proc. 5, 664 (2011)CrossRefGoogle Scholar
  21. 21.
    J. Zhang, L. Zhao, S. Deng, W. Xu, Y. Zhang, Renew. Sustain. Energy Rev. 70, 314 (2017)CrossRefGoogle Scholar
  22. 22.
    H. Xie, C. Zhang, B. Hao, S. Liu, K. Zou, Renew. Sustain. Energy Rev. 16, 113 (2012)CrossRefGoogle Scholar
  23. 23.
    V.H. Quej, J. Almorox, M. Ibrakhimov, L. Saito, Energy Convers. Manag. 110, 448 (2016)CrossRefGoogle Scholar
  24. 24.
    rp5, (accessed 22 March 2017)
  25. 25.
    W. Tang, K. Yang, J. He, J. Qin, Sol. Energy 84, 466 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    L. Wang, O. Kisi, M. Zounemat-Kermani, G.A. Salazar, Z. Zhu, W. Gong, Renew. Sustain. Energy Rev. 61, 384 (2016)CrossRefGoogle Scholar
  27. 27.
    S.A. Klein, Sol. Energy 19, 325 (1977)ADSCrossRefGoogle Scholar
  28. 28.
    V. Bahel, H. Bakhsh, R. Srinivasan, Energy 12, 131 (1987)CrossRefGoogle Scholar
  29. 29.
    J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes (John Wiley & Sons, 2013)Google Scholar
  30. 30.
    J.C. Ododo, A.T. Sulaiman, J. Aidan, M.M. Yuguda, F.A. Ogbu, Renew. Energy 6, 751 (1995)CrossRefGoogle Scholar
  31. 31.
    H. Li, F. Cao, X. Wang, W. Ma, Sci. World J. 2014, 128754 (2014)Google Scholar
  32. 32.
    M.-F. Li, H.-B. Liu, P.-T. Guo, W. Wu, Energy Convers. Manag. 51, 2575 (2010)CrossRefGoogle Scholar
  33. 33.
    V. Badescu, Energy 24, 883 (1999)CrossRefGoogle Scholar
  34. 34.
    C.A. Gueymard, Renew. Sustain. Energy Rev. 39, 1024 (2014)CrossRefGoogle Scholar
  35. 35.
    X. Liu, X. Mei, Y. Li, Q. Wang, J.R. Jensen, Y. Zhang, J.R. Porter, Agric. Forest Meteorol. 149, 1433 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    G. Wu, Y. Liu, T. Wang, Energy Convers. Manag. 48, 2447 (2007)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shaban G. Gouda
    • 1
    • 2
  • Zakia Hussein
    • 1
    • 2
  • Shuai Luo
    • 1
  • Panpan Wang
    • 1
  • Hongliang Cao
    • 1
  • Qiaoxia Yuan
    • 1
    Email author
  1. 1.College of EngineeringHuazhong Agricultural UniversityWuhanChina
  2. 2.Agricultural and Biosystems Engineering Department, Faculty of AgricultureBenha UniversityToukhEgypt

Personalised recommendations