Advertisement

General nonlinear Fokker-Planck equations with multiple potentials: H-theorem and constraints

  • Takuya YamanoEmail author
Regular Article
  • 11 Downloads

Abstract.

In one of the most general possible forms of nonlinear Fokker-Planck equations in one-dimensional space, we consider systems under multiple external potentials with a single diffusion term. We prove the associated H-theorem: that is, the free-energy functional decreases in time under a suitable condition, which relates the entropic form and the two nonlinear functionals in the equations. We consider the constraint on the entropic form and provide a constraint on the functional contained in the diffusion term. Moreover, we see that the gauge field associated with this type of general nonlinear Fokker-Planck equations represents an indicator for fluctuations of the probability flux velocity.

References

  1. 1.
    T.D. Frank, Nonlinear Fokker-Planck Equations: Fundamentals and Applications (Springer, Berlin, 2005)Google Scholar
  2. 2.
    A.D. Fokker, Ann. Phys. 43, 810 (1914)CrossRefGoogle Scholar
  3. 3.
    M. Planck, Sitzungsber. Preuss. Akad. Wissens. 24, 324 (1917)Google Scholar
  4. 4.
    G.A. Casas, F.D. Nobre, E.M.F. Curado, Phys. Rev. E 86, 061136 (2012)CrossRefGoogle Scholar
  5. 5.
    E.M.F. Curado, F.D. Nobre, Entropy 20, 183 (2018)CrossRefGoogle Scholar
  6. 6.
    V. Schwämmle, F.D. Nobre, E.M.F. Curado, Phys. Rev. E 76, 041123 (2007)CrossRefGoogle Scholar
  7. 7.
    V. Schwämmle, E.M.F. Curado, F.D. Nobre, Eur. Phys. J. B 58, 159 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M.S. Ribeiro, G.A. Casas, F.D. Nobre, J. Phys. A 50, 065001 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer, New York, NY, USA, 2009)Google Scholar
  10. 10.
    A.R. Plastino, A. Plastino, Physica A 222, 347 (1995)MathSciNetCrossRefGoogle Scholar
  11. 11.
    T. Yamano, Phys. Lett. A. 374, 3116 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Plastino, A.R. Plastino, Phys. Lett. A 226, 257 (1997)MathSciNetCrossRefGoogle Scholar
  13. 13.
    T. Yamano, Eur. Phys. J. B 18, 103 (2000)CrossRefGoogle Scholar
  14. 14.
    A.M. Scarforne, H. Matsuzoe, T. Wada, Phys. Lett. A 380, 3022 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    H. Feng, J. Wang, J. Chem. Phys. 135, 234511 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Wang, L. Xu, E. Wang, Proc. Natl. Acad. Sci. 105, 12271 (2008)CrossRefGoogle Scholar
  17. 17.
    M.E. Peskin, D.V. Schröder, An Introduction to Quantum Field Theory (Perseus Books Publishing, Cambridge, Massachusetts, 1995) Chapt. 15Google Scholar
  18. 18.
    T. Yamano, Cent. Eur. J. Phys. 11, 910 (2013)Google Scholar
  19. 19.
    B.R. Frieden, Science from Fisher Information - A Unification (Cambridge University Press, Cambridge, 2004)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of ScienceKanagawa UniversityKanagawaJapan

Personalised recommendations