Optimization of pyroelectric conversion of thermal energy through the PZT ceramic buzzer and natural convection

  • Fatima Zahra El FatnaniEmail author
  • M’hammed Mazroui
  • Daniel Guyomar
Regular Article


The main purpose of this work is to take advantage of the pyroelectric effect to produce electricity. We propose the use of the PZT ceramic buzzer, which possesses pyroelectric properties, to convert thermal energy into electrical energy by pyroelectric effect. We take advantage of natural convection to create temperature variation from a fixed thermal source. The amount of power harvested by this technique is sufficient to supply low-power systems. Our experiment consists in subjecting the PZT ceramic buzzer to a temperature variation insured only by natural convection created in an oil bath. In order to verify the existence of thermal fluctuations and confirm the efficiency of our technique, we use thermal imaging which shows that the temperature changes as a function of time. We propose in this paper an optimization of our energy-harvesting system by studying the effect of the convection system geometry on the pyroelectric response: the effect of volume on the pyroelectric response and the effect of the distance between the oil surface and the pyroelectric ceramic. It appears from our study that the harvested power increases when the distance between the buzzer and the fluid decreases but it increases slightly with the volume of liquid.


  1. 1.
    D. Alghisi, S. Dalola, M. Ferrari, V. Ferrari, Sensors Actuators A: Phys. 233, 569 (2015)CrossRefGoogle Scholar
  2. 2.
    M. Meddad, A. Eddiai, A. Cherif, D. Guyomar, A. Hajjaji, Opt. Quantum Electron. 48, 94 (2016)CrossRefGoogle Scholar
  3. 3.
    G. Pellegrinelli, M. Baù, F. Cerini, S. Dalola, M. Ferrari, V. Ferrari, Proc. Eng. 87, 1230 (2014)CrossRefGoogle Scholar
  4. 4.
    Y. Suzuki, D. Miki, M. Edamoto, M. Honzumi, J. Micromech. Microeng. 20, 104002 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    S.P. Beeby, M.J. Tudor, N.M. White, Meas. Sci. Technol. 17, 175 (2006)CrossRefGoogle Scholar
  6. 6.
    S. Saadon, O. Sidek, Energy Convers. Manag. 52, 500 (2011)CrossRefGoogle Scholar
  7. 7.
    B. Ando, S. Baglio, C. Trigona, N. Dumas, L. Latorre, P. Nouet, J. Micromech. Microeng. 20, 125020 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    P.J. Cottinet, D. Guyomar, B. Guiffard, C. Putson, L. Lebrun, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 774 (2010)CrossRefGoogle Scholar
  9. 9.
    C. Ennawaoui, A. Hajjaji, A. Azim, Y. Boughaleb, Mol. Cryst. Liq. Cryst. 628, 49 (2016)CrossRefGoogle Scholar
  10. 10.
    F. Belhora, P.J. Cottinet, A. Hajjaji, D. Guyomar, M. Mazroui, L. Lebrun, Y. Boughaleb, Sensors Actuators A: Phys. 201, 58 (2013)CrossRefGoogle Scholar
  11. 11.
    F. Belhora, A. Hajjaji, M. Mazroui, F.Z. El fatnani, A. Rjafallah, D. Guyomar, Polym. Adv. Technol. 26, 569 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Boughaleb, A. Arnaud, S. Monfray, P.J. Cottinet, S. Quenard, F. Boeuf, T. Skotnicki, Mol. Cryst. Liq. Cryst. 628, 15 (2016)CrossRefGoogle Scholar
  13. 13.
    G. Sebald, S. Pruvost, D. Guyomar, Energy Harvesting from Temperature: Use of Pyroelectric and Electrocaloric Properties, in Electrocaloric Materials (Springer, Berlin, Heidelberg, 2014) pp. 225--249Google Scholar
  14. 14.
    H. Lhermet, C. Condemine, M. Plissonnier, R. Salot, P. Audebert, M. Rosset, IEEE J. Solid-State Circ. 43, 246 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    X. Lu, S.H. Yang, Thermal energy harvesting for WSNs, in IEEE International Conference on Systems Man and Cybernetics (SMC) (2010),
  16. 16.
    V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, M. Srivastava, Design considerations for solar energy harvesting wireless embedded systems, in Proceedings of the 4th international symposium on Information processing in sensor networks (IEEE Press, 2005) p. 64Google Scholar
  17. 17.
    C. Alippi, C. Galperti, IEEE Trans. Circ. Syst. 55, 1742 (2008)Google Scholar
  18. 18.
    G. Sebald, S. Pruvost, D. Guyomar, Smart Mater. Struct. 17, 015012 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    H. Nguyen, A. Navid, L. Pilon, Appl. Therm. Eng. 30, 2127 (2010)CrossRefGoogle Scholar
  20. 20.
    A. Cuadras, M. Gasulla, V. Ferrari, Sensors Actuators A: Phys. 158, 132 (2010)CrossRefGoogle Scholar
  21. 21.
    B. Hanrahan, C. Neville, A. Smith, N. Gabrielyan, N. Jankowski, C.M. Waits, Adv. Mater. Technol. 1, 1600178 (2016)CrossRefGoogle Scholar
  22. 22.
    D. Zabek, K. Seunarine, C. Spacie, C. Bowen, ACS Appl. Mater. Interfaces 9, 9161 (2017)CrossRefGoogle Scholar
  23. 23.
    F.Z. El fatnani, D. Guyomar, F. Belhora, M. Mazroui, Y. Boughaleb, A. Hajjaji, Eur. Phys. J. Plus 131, 252 (2016)CrossRefGoogle Scholar
  24. 24.
    O. Turan, N. Chakraborty, R.J. Poole, J. Non-Newtonian Fluid Mech. 171, 83 (2012)CrossRefGoogle Scholar
  25. 25.
    A.Y. Gelfgat, J. Comput. Phys. 156, 300 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    G. de Vahl Davis, Int. J. Numer. Methods Fluids 3, 249 (1983)ADSCrossRefGoogle Scholar
  27. 27.
    R.W. Whatmore, Rep. Prog. Phys. 49, 1335 (1986)ADSCrossRefGoogle Scholar
  28. 28.
    X. Li, S.G. Lu, X.Z. Chen, H. Gu, X.S. Qian, Q.M. Zhang, J. Mater. Chem. C 1, 23 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    M.H. Lee, R. Guo, A.S. Bhalla, J. Electroceram. 2, 229 (1998)CrossRefGoogle Scholar
  30. 30.
    F.Z. El Fatnani, D. Guyomar, M. Mazroui, F. Belhora, Y. Boughaleb, Opt. Mater. 56, 22 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    M. Meddad, A. Eddiai, D. Guyomar, S. Belkhiat, A. Hajjaji, K. Yuse, Y. Boughaleb, J. Intell. Mater. Syst. Struct. 24, 411 (2013)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Univ Lyon, INSA-Lyon, LGEFVilleurbanneFrance
  2. 2.Laboratoire de Physique de la Matière Condensée, Faculté des Sciences Ben M’sickHassan II University of CasablancaCasablancaMorocco

Personalised recommendations