Advertisement

Enhanced thermal energy transport of a ferrofluid contained in a double-sided lid-driven square container due to adiabatic block in the presence of magnetic force

  • Muhammad Arshad SiddiquiEmail author
  • Tariq Javed
  • Ziafat Mehmood
Review
  • 23 Downloads

Abstract.

This article contains computational results for mixed convective energy flow in cobalt-based ferrofluid enclosed in a two-sided lid-driven container providing heat from the left vertical moving boundary under MHD effects influenced by a source of heat generation/absorption when a square adiabatic block of different aspect ratios is located in the center of a square container. The governing equations describing the heat transfer and fluid flow are exposed to the penalty method first and after that reduced equations are simplified by the Galerkin technique. The governing flow parameters are a concentration of ferroparticles (\( 0.0 < \phi < 0.1\)), Reynolds number (\( 50 < Re < 200\)), Hartmann number (\( 0 < Ha < 100\)), Richardson number (\( 0.1 < Ri < 100\)) and heat source/sink coefficient (\( -10 < Q < 10\)). The solutions show that the enhancements in heat transport occur due to the presence of the block up to a certain block size. Streamlines recirculation cells suppressed and augmentation in heat transfer are remarkably high because of the influence of an adiabatic block. The results also show that the patterns of energy and fluid flow are significantly dependent upon the concentration of nanoscale solid ferromagnetic particles, heat generation/absorption coefficient, Richardson, Reynolds and Hartman numbers. The obtained results are expressed in terms of streamlines, isotherms, local and overall energy flow rates.

References

  1. 1.
    U.K.N.G. Ghia, K.N. Ghia, C.T. Shin, J. Comput. Phys. 48, 387 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    A.A. Mohamad, R. Viskanta, Numer. Heat Transf. 19, 187 (1991)CrossRefGoogle Scholar
  3. 3.
    A.A. Mohamad, R. Viskanta, Appl. Math. Modell. 19, 465 (1995)CrossRefGoogle Scholar
  4. 4.
    A.K. Prasad, J.R. Koseff, Int. J. Heat Fluid Flow 17, 460 (1996)CrossRefGoogle Scholar
  5. 5.
    T.H. Hsu, P.T. Hsu, S.P. How, Numer. Heat Transf. Part A Appl. 31, 655 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    T.H. Hsu, Numer. Heat Transf. Part A Appl. 38, 627 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    O. Aydm, Int. Commun. Heat Mass Transf. 26, 1019 (1999)CrossRefGoogle Scholar
  8. 8.
    H.F. Oztop, I. Dagtekin, Int. J. Heat Mass Transfer 47, 1761 (2004)CrossRefGoogle Scholar
  9. 9.
    A.J. Chamkha, Numer. Heat Transf. Part A Appl. 41, 529 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    R. Dalal, D. Naylor, D. Roeleveld, Energy Build. 41, 1256 (2009)CrossRefGoogle Scholar
  11. 11.
    J.K. Sigey, F.K. Gatheri, M. Kinyanjui, Energy Convers. Manag. 45, 2571 (2004)CrossRefGoogle Scholar
  12. 12.
    K. Yapici, S. Obut, Heat Transf. Eng. 36, 303 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    G. Guo, M.A. Sharif, Int. J. Therm. Sci. 43, 465 (2004)CrossRefGoogle Scholar
  14. 14.
    T.S. Cheng, W.H. Liu, Comput. Fluids 100, 108 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M.A. Waheed, Int. J. Heat Mass Transfer 52, 5055 (2009)CrossRefGoogle Scholar
  16. 16.
    R.K. Tiwari, M.K. Das, Int. J. Heat Mass Transfer 50, 2002 (2007)CrossRefGoogle Scholar
  17. 17.
    D. Ramakrishna, T. Basak, S. Roy, I. Pop, Int. J. Heat Mass Transfer 55, 5436 (2012)CrossRefGoogle Scholar
  18. 18.
    M.A. Ismael, I. Pop, A.J. Chamkha, Int. J. Therm. Sci. 82, 47 (2014)CrossRefGoogle Scholar
  19. 19.
    V. Sivakumar, S. Sivasankaran, P. Prakash, J. Lee, Comput. Math. Appl. 59, 3053 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Barletta, D.A. Nield, Int. J. Heat Mass Transfer 52, 4244 (2009)CrossRefGoogle Scholar
  21. 21.
    E.M. Wahba, M.A. Gadalla, Heat Transf. Asian Res. 38, 422 (2009)CrossRefGoogle Scholar
  22. 22.
    S.K. Mahapatra, P. Nanda, A. Sarkar, Heat Mass Transf. 42, 739 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    T.H. Ji, S.Y. Kim, J.M. Hyun, Heat Mass Transf. 43, 629 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    P.N. Shankar, M.D. Deshpande, Annu. Rev. Fluid Mech. 32, 93 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    C. Scherer, A.M. Figueiredo Neto, Braz. J. Phys. 35, 718 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    G.R. Kefayati, Numer. Heat Transf. Part A Appl. 65, 509 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    G.H.R. Kefayati, J. Mol. Liq. 191, 1 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Sheikholeslami, M. Gorji-Bandpy, Powder Technol. 256, 490 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Mojumder, S. Saha, S. Saha, M.A.H. Mamun, Proc. Eng. 105, 96 (2015)CrossRefGoogle Scholar
  30. 30.
    M.M. Rahman, Cogent Phys. 3, 1234662 (2016)Google Scholar
  31. 31.
    N.S. Gibanov, M.A. Sheremet, H.F. Oztop, K. Al-Salem, Int. J. Heat Mass Transfer 112, 158 (2017)CrossRefGoogle Scholar
  32. 32.
    N.S. Gibanov, M.A. Sheremet, H.F. Oztop, N. Abu-Hamdeh, Int. J. Heat Mass Transfer 114, 1086 (2017)CrossRefGoogle Scholar
  33. 33.
    M.S. Astanina, M.A. Sheremet, H.F. Oztop, N. Abu-Hamdeh, Int. J. Heat Mass Transfer 118, 527 (2018)CrossRefGoogle Scholar
  34. 34.
    N.S. Gibanov, M.A. Sheremet, H.F. Oztop, N. Abu-Hamdeh, Eur. J. Mech.-B/Fluids 70, 148 (2018)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    K.M. Rabbi, S. Saha, S. Mojumder, M.M. Rahman, R. Saidur, T.A. Ibrahim, Alex. Eng. J. 55, 127 (2016)CrossRefGoogle Scholar
  36. 36.
    N.C. Jhumur, A. Bhattacharjee, Proc. Eng. 194, 494 (2017)CrossRefGoogle Scholar
  37. 37.
    N.S. Gibanov, M.A. Sheremet, H.F. Oztop, O.K. Nusier, Numer. Heat Transf. Part A Appl. 72, 54 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    T. Javed, Z. Mehmood, Z. Abbas, Physica B 506, 122 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    T. Javed, M.A. Siddiqui, Int. J. Therm. Sci. 125, 419 (2018)CrossRefGoogle Scholar
  40. 40.
    P.A. Davidson An Introduction to Magnetohydrodynamics (Cambridge University Press, Cambridge, 2001)Google Scholar
  41. 41.
    J.P. Garandet, T. Alboussiere, R. Moreau, Int. J. Heat Mass Transfer 35, 741 (1992)CrossRefGoogle Scholar
  42. 42.
    M.A. Waheed, Int. J. Heat Mass Transfer 52, 5055 (2009)CrossRefGoogle Scholar
  43. 43.
    M. Roy, S. Roy, T. Basak, Energy 82, 1 (2015)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Muhammad Arshad Siddiqui
    • 1
    Email author
  • Tariq Javed
    • 1
  • Ziafat Mehmood
    • 1
  1. 1.Department of Mathematics and StatisticsFBAS International Islamic UniversityIslamabadPakistan

Personalised recommendations