Advertisement

Simulation of a fluid flow and investigation of a permeability-porosity relationship in porous media with random circular obstacles using the curved boundary lattice Boltzmann method

  • Mohammad Ezzatabadipour
  • Hamid Zahedi
Regular Article
  • 24 Downloads

Abstract.

In this paper, the fluid flow between two parallel flat plates filled with porous media was investigated numerically using the Single Relaxation Time (SRT) Lattice Boltzmann Method (LBM). The obstacles representing porous media were considered as random, circular, rigid and granular ones with uniform diameters and without overlap. The fluid was supposed to be a single-phase viscous Newtonian fluid and the flow to be incompressible, steady and laminar. The uniform velocity profile was considered at the entrance of the canal and the no-slip condition was imposed at solid walls. For applying curved boundary conditions, the linear interpolation method (\( \Delta\) fraction) was used in this work. The effect of varying the Reynolds number on the pressure gradient and the Darcy drag was studied. The porous medium was supposed to be isotropic and having scalar permeability. The dimensionless permeability was calculated as a function of the Knudsen number. Also, the dimensionless permeability versus porosity was investigated and the results were compared with the Clague equation for different materials. Because of rather low precision of the Clague equation at high porosities, an extension to the Clague equation was presented. The permeability-porosity relationship was surveyed and the corresponding curve was plotted in the LBM scale. It was seen from numerical results that the enhancement of the Knudsen number increases the dimensionless permeability. The change of streamlines tortuosity in terms of porosity was explored and the results were compared with the revised Bruggeman equation. The obtained results demonstrate that the Lattice Boltzmann Method is very useful in the challenging problems of fluid dynamics such as fluid flow simulation through porous media.

References

  1. 1.
    N. Abdussamie, Excerpt from the Proceedings of the COMSOL Conference (Boston, 2010)Google Scholar
  2. 2.
    K.E. Thompson, H.S. Fogler, AIChE J. 43, 1377 (1997)CrossRefGoogle Scholar
  3. 3.
    H. Golestanian, IUST Int. J. Eng. Sci. 18, 67 (2007)Google Scholar
  4. 4.
    J.F. Despois, A. Mortensen, Acta Mater. 53, 1381 (2005)CrossRefGoogle Scholar
  5. 5.
    N.S. Martys, S. Torquato, D.P. Bentz, Phys. Rev. E 50, 403 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    N.D. Ngo, K.K. Tamma, Int. J. Numer. Methods Eng. 60, 1741 (2004)CrossRefGoogle Scholar
  7. 7.
    Z. Chai, B. Shi, J. Lu, Z. Guo, Comput. Fluids 39, 2069 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Grucelski, J. Pozorski, Comput. Fluids 71, 406 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    A.P. Deshpande, A. Srikanth, N. Praveen, Can. J. Chem. Eng. 83, 808 (2005)CrossRefGoogle Scholar
  10. 10.
    L.V. Ortega, S.R. Romo, Can. J. Chem. Eng. 86, 667 (2008)CrossRefGoogle Scholar
  11. 11.
    J. Bernsdorf, G. Brenner, F. Durst, Comput. Phys. Commun. 129, 247 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    M.A.A. Spaid, F.R. Phelan, Phys. Fluids. 9, 2468 (1997)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    A.A. Osiptsov, Adv. Water Resour. 104, 293 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    M.A.V. Doormaal, J.G. Pharoah, Int. J. Numer. Methods Fluids 59, 75 (2009)CrossRefGoogle Scholar
  15. 15.
    A. Pazdniakou, P.M. Adler, Adv. Water Resour. 62, 292 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    A. Nabovati, E.W. Llewellin, A.C.M. Sousa, Composites Part A 40, 860 (2009)CrossRefGoogle Scholar
  17. 17.
    Y. Gao, X. Zhang, P. Rama, Y. Liu, R. Chen, H. Ostadi, K. Jiang, Transp. Porous Media 92, 457 (2012)CrossRefGoogle Scholar
  18. 18.
    H. Cho, N. Jeong, H.J. Sung, Int. J. Heat Fluid Flow 44, 435 (2013)CrossRefGoogle Scholar
  19. 19.
    A. Zarghami, C. Biscarini, S. Succi, S. Ubertini, J. Sci. Comput. 59, 80 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    H. Koku, R.S. Maier, K.J. Czymmek, M.R. Schure, A.M. Lenhoff, J. Chromatogr. A 1218, 3466 (2011)CrossRefGoogle Scholar
  21. 21.
    H. Koku, R.S. Maier, M.R. Schure, A.M. Lenhoff, J. Chromatogr. A 1237, 55 (2012)CrossRefGoogle Scholar
  22. 22.
    K. Yamamoto, R. Komiyama, T. Umemura, Int. J. Mod. Phys. C 24, 1340003 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    J.A. Rabi, E.S. Kamimura, Proc. Eng. 157, 238 (2016)CrossRefGoogle Scholar
  24. 24.
    V.A. Fortunato, F.L. Caneppele, R. Ribeiro, J.A. Rabi, Water Sci. Technol. 77, 838 (2018)CrossRefGoogle Scholar
  25. 25.
    R.H. Rosa, G.V. von Atzingen, V. Belandria, A.L. Oliveira, S. Bostyn, J.A. Rabi, J. Food Eng. 176, 88 (2016)CrossRefGoogle Scholar
  26. 26.
    R. Durán, A.L. Villa, R. Ribeiro, J.A. Rabi, Chem. Prod. Process Model. 10, 203 (2015)Google Scholar
  27. 27.
    D.C.G. Okiyama, E.S. Kamimura, J.A. Rabi, Int. J. Biotechnol. Wellness Ind. 4, 40 (2015)CrossRefGoogle Scholar
  28. 28.
    M.C. Sukop, D.T. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers (Springer, Berlin, 2006)Google Scholar
  29. 29.
    S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, Oxford, 2001)Google Scholar
  30. 30.
    G.R. McNamara, G. Zanetti, Phys. Rev. Lett. 61, 2332 (1988)ADSCrossRefGoogle Scholar
  31. 31.
    J.M.V.A. Koelman, Europhys. Lett. 15, 603 (1991)ADSCrossRefGoogle Scholar
  32. 32.
    Z. Guo, T.S. Zhao, Phys. Rev. E 66, 036304 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    R. Mei, W. Shyy, D. Yu, L.S. Luo, J. Comput. Phys. 161, 680 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    D.A. Nield, A. Bejan, Convection in Porous Media, 3rd edition (Springer, New York, 2006)Google Scholar
  35. 35.
    K. Vafai, Handbook of Porous Media, 2nd edition (Taylor & Francis, Boca Raton, 2005)Google Scholar
  36. 36.
    E. Jahanshahi Javaran, S.A. Gandjalikhan Nassab, S. Jafari, Int. J. Therm. Sci. 49, 1031 (2010)CrossRefGoogle Scholar
  37. 37.
    X. Liu, Z. Guo, Comput. Math. Appl. 65, 186 (2013)MathSciNetCrossRefGoogle Scholar
  38. 38.
    N. Jeong, Transp. Porous Med. 83, 271 (2010)CrossRefGoogle Scholar
  39. 39.
    A. Nur, G. Mavko, J. Dvorkin, D. Galmudi, Leading Edge 17, 357 (1998)CrossRefGoogle Scholar
  40. 40.
    Curve Fitting Toolbox User’s Guide - MATLAB - MathWorks, https://doi.org/www.mathworks.com/help/pdf_doc/curvefit/curvefit.pdf (accessed 5 March 2018)
  41. 41.
    T. Ozgumus, M. Mobedi, U. Ozkol, Eng. Appl. Comput. Fluid Mech. 8, 308 (2014)Google Scholar
  42. 42.
    M.A. Saada, S. Chikh, A. Campo, Heat Mass Transf. 42, 995 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    A. Costa, Geophys. Res. Lett. 33, 1 (2006)CrossRefGoogle Scholar
  44. 44.
    T. Cousins, B. Ghanbarian, H. Daigle, Transp. Porous Med. 122, 527 (2018)CrossRefGoogle Scholar
  45. 45.
    C.F. Berg, Transp. Porous Med. 103, 381 (2014)CrossRefGoogle Scholar
  46. 46.
    L. Pisani, Transp. Porous Med. 88, 193 (2011)CrossRefGoogle Scholar
  47. 47.
    H. Saomoto, J. Katagiri, Transp. Porous Med. 107, 781 (2015)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sirjan Jahan Steel ComplexSirjan, KermanIran
  2. 2.Department of Physical Chemistry, Faculty of ChemistryFerdowsi University of MashhadMashhadIran

Personalised recommendations