Numerical study of natural convection in a cavity with discrete heat sources

  • Ali Doostali
  • Marzieh RezazadehEmail author
Regular Article


Natural convection heat transfer in a cavity has always attracted researchers interest because of its numerous applications in engineering, e.g., cooling of electronic parts, thermal insulators, buildings ventilation systems, solar collectors, and nuclear reactors. In general, due to favorable factors, such as process simplicity, cost-effectiveness, low noise, and the possibility of recovery, the process of natural convection has many uses in various industrial applications. In this study, a square cavity with air inside is considered. Three heaters are situated at the bottom wall, the top wall is maintained at a constant cold temperature, and the two side walls are insulated. The lattice Boltzmann method is used for simulation, and the overall goals are to optimize the installation location and heater length and also investigating the effects of the amplitude and oscillation period of heat flux fluctuation. The results indicate that increasing the difference between amplitudes and oscillation periods of heat flux in heaters causes the flow within the cavity to stabilize more quickly and also increases temperature oscillation due to larger amplitudes and periods. Also, in the cavity with three heaters, the average temperature of the middle heater remains unchanged relative to the case of constant heat flux. This research can be used in the design of an appropriate cooling system for electronic components to ensure effective and safe operational conditions.


  1. 1.
    I.L. Ngo, C. Byon, J. Mech. Sci. Technol. 29, 2995 (2015)CrossRefGoogle Scholar
  2. 2.
    M.N.A.A. Siddiki, Int. J. Innov. Sci. Eng. Technol. 2, 2348 (2015)Google Scholar
  3. 3.
    S.C. Saha, M. Molla, M.A.I. Khan, J. Heat Mass Transf. 6, 1 (2012)Google Scholar
  4. 4.
    N.B. Cheikh, B.B. Beya, T. Lili, Int. Commun. Heat Mass Transf. 34, 369 (2007)CrossRefGoogle Scholar
  5. 5.
    S. Saha, G. Saha, M. Islam, J. Sci. Technol. 3, 29 (2008)Google Scholar
  6. 6.
    J.H. Bae, J.M. Hyun, Int. J. Therm. Sci. 43, 3 (2004)CrossRefGoogle Scholar
  7. 7.
    E.K. Lakhal, M. Hasnaoui, P. Vasseur, E. Bilgen, Numer. Heat Transf., Part A 27, 319 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    B. Abourida, M. Hasnaoui, S. Douamna, Numer. Heat Transf. A 36, 737 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    N. Nithyadevi, P. Kandaswamy, S. Sivasankaran, Math. Probl. Eng. 2006, 23425 (2006)CrossRefGoogle Scholar
  10. 10.
    F.Y. Zhao, D. Liu, G.F. Tang, Energy Convers. Manag. 48, 2461 (2007)CrossRefGoogle Scholar
  11. 11.
    B. Ghasemi, S.M. Aminossadati, Int. J. Therm. Sci. 49, 1 (2010)CrossRefGoogle Scholar
  12. 12.
    P.S. Mahapatra, N.K. Manna, K. Ghosh, A. Mukhopadhyay, Int. J. Heat Mass Transf. 83, 450 (2015)CrossRefGoogle Scholar
  13. 13.
    T. Naffouti, J. Zinoubi, R. Ben-Maad, Int. J. Therm. Technol. 3, 146 (2013)Google Scholar
  14. 14.
    T. Naffouti, R. Djebali, Comput. Model. Eng. Sci. 88, 211 (2012)Google Scholar
  15. 15.
    M.A. Mussa, S. Abdullah, C.N. Azwadi, N. Muhamad, Comput. Fluids 44, 162 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    T. Naffouti, J. Zinoubi, N.A. Sidik, R.B. Maad, J. Appl. Fluid Mech. 9, 419 (2016)CrossRefGoogle Scholar
  17. 17.
    K.M. Gangawane, R.P. Bharti, S. Kumar, Heat Transf. Eng. 37, 507 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    M. Nazari, H. Shokri, M.H. Kayhani, J. Braz. Soc. Mech. Sci. Eng. 37, 149 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Jami, A. Mezrhab, M.H. Bouzidi, Lallemand, Int. J. Therm. Sci. 46, 38 (2007)CrossRefGoogle Scholar
  20. 20.
    S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond (Oxford University Press, 2001)Google Scholar
  21. 21.
    J. Latt, Choice of units in lattice Boltzmann simulations (2008)
  22. 22.
    O. Aydin, W.J. Yang, Int. J. Numer. Methods Heat Fluid Flow 10, 518 (2000)CrossRefGoogle Scholar
  23. 23.
    G. Saha, S. Saha, M.Q. Islam, M.R. Akhanda, J. Nav. Archit. Mar. Eng. 4, 1 (2007)CrossRefGoogle Scholar
  24. 24.
    B. Calcagni, F. Marsili, M. Paroncini, Appl. Therm. Eng. 25, 2522 (2005)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Golpayegan University of TechnologyIsfahanIran

Personalised recommendations