Study of Soret and Dufour effects and secondary instabilities on Rayleigh-Bénard convection in a couple stress fluid

  • Ragoju RaviEmail author
  • C. Kanchana
  • G. Janardhana Reddy
  • Hussain Basha
Regular Article


The effects of Soret and Dufour parameters on the thermosolutal convection in a horizontal couple stress fluid layer with constant temperature and solutal concentration are investigated analytically under the assumption of Boussinesq approximation. In linear stability analysis, using the normal mode Fourier truncated representation, we arrived at the expressions for stationary and oscillatory Rayleigh numbers. The effects of solutal Rayleigh number, Lewis number, and couple stress, Soret and Dufour parameters on stationary and oscillatory Rayleigh numbers are presented graphically. The method of multiscales is used to derive the Newell-Whitehead-Segel equation. The possibility of occurrence of Eckhaus and zigzag secondary instabilities is discussed. The influence of the Dufour parameter on the region of secondary instabilities is demonstrated. The nondimensional parameters, Nusselt and Sherwood numbers are used to quantify the heat and mass transports. From the study it is found that the effect of Soret and couple stress parameters is to enhance the heat and mass transports. Further, the effect of a negative value of the Dufour parameter is to enhance the heat and mass transports and that of a positive value of the Dufour parameter is to diminish the same.


  1. 1.
    V.K. Stokes, Phys. Fluids 9, 1709 (1966)CrossRefGoogle Scholar
  2. 2.
    D.A. Rubenstein, W. Yin, M.D. Frame, Biofluid Mechanics (Academic Press, Wyman Street, Waltham, USA, 2012)Google Scholar
  3. 3.
    C. Singh, Wear 80, 281 (1982)CrossRefGoogle Scholar
  4. 4.
    L.M. Srivastava, J. Biomech. 18, 479 (1985)CrossRefGoogle Scholar
  5. 5.
    V.M. Soundalgekar, P. Chaturani, Rheol. Acta 19, 710 (1980)CrossRefGoogle Scholar
  6. 6.
    E.R.G. Eckert, R.M. Drake, Analysis of Heat and Mass Transfer (McGraw-Hill, New York, 1972)Google Scholar
  7. 7.
    P.G. Siddheshwar, S. Pranesh, Int. J. Non-Linear Mech. 39, 165 (2004)CrossRefGoogle Scholar
  8. 8.
    M.S. Malashetty, S.N. Gaikwad, M. Swamy, Int. J. Therm. Sci. 45, 897 (2006)CrossRefGoogle Scholar
  9. 9.
    N. Rudraiah, P.G. Siddheshwar, Heat Mass Transf. 33, 287 (1998)CrossRefGoogle Scholar
  10. 10.
    R.C. Sharma, K.D. Thakur, Czech. J. Phys. 50, 753 (2000)CrossRefGoogle Scholar
  11. 11.
    M.S. Malashetty, I.S. Shivakumara, S. Kulkarni, Phys. Lett. A 373, 781 (2009)CrossRefGoogle Scholar
  12. 12.
    I.S. Shivakumara, Arch. Appl. Mech. 80, 949 (2010)CrossRefGoogle Scholar
  13. 13.
    M.S. Malashetty, P. Kollur, Transp. Porous Media 86, 435 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A.K. Srivastava, B.S. Bhadauria, P. Mishra, MATEC Web Conf. 1, 06008 (2012)CrossRefGoogle Scholar
  15. 15.
    A. Vanita Kumar, V.K. Gupta, Ain Shams Eng. J., (2016)
  16. 16.
    B.S. Bhadauria, P.G. Siddheshwar, A.K. Singh, V.K. Gupta, J. Appl. Fluid Mech. 9, 1255 (2016)CrossRefGoogle Scholar
  17. 17.
    M.S. Malashetty, D. Pal, P. Kollur, Fluid Dyn. Res. 42, 35502 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    R. Ravi, C. Kanchana, P.G. Siddheshwar, Appl. Math. Mech. 38, 1579 (2017)CrossRefGoogle Scholar
  19. 19.
    J. Kim, Y.T. Kang, C.K. Choi, Int. J. Refrig. 30, 323 (2007)CrossRefGoogle Scholar
  20. 20.
    P.G. Siddheshwar, C. Kanchana, Y. Kakimoto, A. Nakayama, ASME J. Heat Transf. 139, 012402 (2016)CrossRefGoogle Scholar
  21. 21.
    P.G. Siddheshwar, C. Kanchana, Int. J. Mech. Sci. 131-132, 1061 (2017)CrossRefGoogle Scholar
  22. 22.
    P.G. Siddheshwar, C. Kanchana, J. Nanofluids 7, 791 (2018)CrossRefGoogle Scholar
  23. 23.
    S. Wang, W. Tan, Int. J. Heat Fluid Flow 32, 88 (2011)CrossRefGoogle Scholar
  24. 24.
    A.A. Altawallbeh, I. Hashim, B.S. Bhadauria, AIP Conf. Proc. 1830, 020008 (2017)CrossRefGoogle Scholar
  25. 25.
    J.K. Platten, G. Chavepeyer, Adv. Chem. Phys. 32, 281 (1973)Google Scholar
  26. 26.
    N. Rudraiah, P.R. Patil, Thermal diffusion and convective stability of two component fluid in a porous medium, in Proceedings of International Heat transfer conference, Tokyo, Japan, Vol. 79 (1974)Google Scholar
  27. 27.
    N. Rudraiah, P.K. Srimani, R. Friedrich, Int. J. Heat Mass Transfer 25, 715 (1982)CrossRefGoogle Scholar
  28. 28.
    D. Poulikakos, Int. Communi. Heat Mass Transf. 13, 587 (1986)CrossRefGoogle Scholar
  29. 29.
    M.E. Taslim, U. Narusawa, ASME J. Heat Tranf. 108, 221 (1985)CrossRefGoogle Scholar
  30. 30.
    N. Rudraiah, M.S. Malashetty, ASME J. Heat Transf. 108, 872 (1986)CrossRefGoogle Scholar
  31. 31.
    S.N. Gaikwad, M.S. Malashetty, K. Rama Prasad, Int. J. Non-Linear Mech. 42, 903 (2007)CrossRefGoogle Scholar
  32. 32.
    A. Benerji Babu, R. Ravi, S.G. Tagare, Commun. Nonlinear Sci. Numer. Simul. 17, 5042 (2012)MathSciNetCrossRefGoogle Scholar
  33. 33.
    A. Benerji Babu, R. Ravi, S.G. Tagare, J. Porous Media 17, 31 (2014)CrossRefGoogle Scholar
  34. 34.
    A.A. Altawallbeh, B.S. Bhadauria, I. Hashim, Int. J. Heat Mass Transfer 59, 103 (2013)CrossRefGoogle Scholar
  35. 35.
    S. Agarwal, P. Rana, Appl. Math. Mech. 37, 215 (2016)CrossRefGoogle Scholar
  36. 36.
    S. Agarwal, B.S. Bhadauria, P.G. Siddheshwar, Spec. Top. Rev. Porous Media 2, 1 (2011)CrossRefGoogle Scholar
  37. 37.
    F.S. Ibrahim, F.M. Hady, S.M. Abdel-Gaied, M.R. Eid, Appl. Math. Mech. 31, 675 (2010)CrossRefGoogle Scholar
  38. 38.
    M. Nawaz, T. Hayat, A. Alsaedi, Appl. Math. Mech. 33, 1403 (2012)CrossRefGoogle Scholar
  39. 39.
    M.Q. AL-Odat, A. Al-Ghamdi, Appl. Math. Mech. 33, 195 (2012)CrossRefGoogle Scholar
  40. 40.
    A.C. Newell, J.A. Whitehead, J. Fluid Mech. 38, 279 (1969)MathSciNetCrossRefGoogle Scholar
  41. 41.
    T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. Dewitt, Fundamentals of Heat and Mass Transfer (Wiley, New York, 2006)Google Scholar
  42. 42.
    B. Ghasemi, S.M. Aminosadati, Num. Heat Transf. 55, 807 (2009)CrossRefGoogle Scholar
  43. 43.

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ragoju Ravi
    • 1
    Email author
  • C. Kanchana
    • 2
  • G. Janardhana Reddy
    • 3
  • Hussain Basha
    • 3
  1. 1.Department of Applied SciencesNational Institute of Technology GoaPonda, GoaIndia
  2. 2.College of Science, Harbin Institute of TechnologyShenzhen Graduate SchoolShenzhenChina
  3. 3.Department of MathematicsCentral University of KarnatakaKalaburagiIndia

Personalised recommendations