Solutions and conservation laws of a generalized 3D Kawahara equation

  • Letlhogonolo Daddy MolelekiEmail author
Regular Article


We study a nonlinear evolution partial differential equation, namely, the generalized \((3+1)\)-dimensional (3D) Kawahara equation. The Lie symmetry method in conjunction with the Kudryashov method will be employed to derived solutions of the 3D generalized Kawahara equation. Furthermore, the multiplier method will be implemented to construct conservation laws of the generalized 3D Kawahara equation. Thereafter, a brief physical meaning of the derived conserved quantities is discussed.


  1. 1.
    C. Gu, H. Hu, Z. Zhou, Darboux Transformation in Soliton Theory and Its Geometric Applications (Springer, The Netherlands, 2005)Google Scholar
  2. 2.
    M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, Cambridge, UK, 1991)Google Scholar
  3. 3.
    R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004)Google Scholar
  4. 4.
    S.K. Liu, Z.T. Fu, S.D. Liu, Q. Zhao, Phys. Lett. A 289, 69 (2001)MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Wazwaz, Appl. Math. Comput. 167, 1179 (2005)MathSciNetGoogle Scholar
  6. 6.
    Sirendaoreji, S. Jiong, Phys. Lett. A 309, 387 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    G.W. Bluman, S. Kumei, Symmetries and Differential Equations, in Applied Mathematical Sciences, Vol. 81 (Springer-Verlag, New York, 1989)Google Scholar
  8. 8.
    P.J. Olver, Applications of Lie Groups to Differential Equations, in Graduate Texts in Mathematics, Vol. 107, 2nd edition (Springer-Verlag, Berlin, 1993)Google Scholar
  9. 9.
    B. Champagne, W. Hereman, P. Winternitz, Comput. Phys. Commun. 66, 319 (1991)CrossRefGoogle Scholar
  10. 10.
    M.L. Wang, Y.B. Zhou, Phys. Lett. A 318, 84 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    J.H. He, X.H. Wu, Chaos, Soliton Fractals 30, 700 (2006)CrossRefGoogle Scholar
  12. 12.
    N.A. Larkin, M.H. Simões, Math. Phys. 67, 98 (2016)Google Scholar
  13. 13.
    H.A. Biagioni, F. Linares, J. Math. Anal. Appl. 211, 131 (1997)MathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Ceballos, M. Sepulveda, O. Villagran, Appl. Math. Comput. 190, 912 (2007)MathSciNetGoogle Scholar
  15. 15.
    S.B. Cui, D.G. Deng, S.P. Tao, Acta Math. Sin. (Engl. Ser.) 22, 1457 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    S.A. Elwakil, E.K. El-Shewy, H.G. Abdelwahed, Chin. J. Phys. 49, 732 (2011)Google Scholar
  17. 17.
    A. Jeffrey, T. Kakutani, SIAM Rev. 14, 582 (1972)MathSciNetCrossRefGoogle Scholar
  18. 18.
    H. Hasimoto, Kagaku 40, 401 (1970)Google Scholar
  19. 19.
    V.E. Zakharov, E.A. Kuznetsov, Sov. Phys. JETP 39, 285 (1974)Google Scholar
  20. 20.
    L.V. Ovsiannikov, Group Analysis of Differential Equations (Academic Press, New York, 1982)Google Scholar
  21. 21.
    P.J. Olver, Equivalence, Invariants, and Symmetry (Cambridge University Press, 1995)Google Scholar
  22. 22.
    N.A. Kudryashov, J. Appl. Math. Mech. 52, 361 (1988)MathSciNetCrossRefGoogle Scholar
  23. 23.
    N.A. Kudryashov, Phys. Lett. A 155, 269 (1991)MathSciNetCrossRefGoogle Scholar
  24. 24.
    N.A. Kudryashov, Commun. Nonlinear Sci. Numer. Simul. 17, 2248 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    L.D. Moleleki, B. Muatjetjeja, A.R. Adem, Nonlinear Dyn. 87, 2187 (2017)CrossRefGoogle Scholar
  26. 26.
    A.R Adem, B. Muatjetjeja, Appl. Math. Lett. 48, 109 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    J.C. Camacho, M. Rosa, M.L. Gandarias, M.S. Bruzon, J. Comput. Appl. Math. 318, 149 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    R. de la Rosa, M.L. Gandarias, M.S. Bruzon, Commun. Nonlinear Sci. Numer. Simul. 40, 71 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    E. Recio, M.L. Gandarias, M.S. Bruzon, Chaos, Soliton Fractals 89, 572 (2016)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical SciencesNorth-West University, Mafikeng CampusMmabathoSouth Africa

Personalised recommendations