Advertisement

Parametrization of cross sections for elementary hadronic collisions involving strange particles

  • J. HirtzEmail author
  • J. -C. David
  • A. Boudard
  • J. Cugnon
  • S. Leray
  • I. Leya
  • D. Mancusi
Regular Article

Abstract.

The production of strange particles (kaons, hyperons) and hypernuclei in light charged-particle-induced reactions in the energy range of a few GeV (2-15 GeV) has become a topic of active research in several facilities (e.g., HypHI and PANDA at GSI and/or FAIR (Germany), JLab (USA), and JPARC (Japan)). This energy range represents the low-energy limit of the string models (degree of freedom: quark and gluon) or the high-energy limit of the so-called spallation models (degree of freedom: hadrons). A well-known spallation model is INCL, the Liège intranuclear cascade model (combined with a de-excitation model to complete the reaction). INCL, known to give good results up to 2-3GeV, was recently upgraded by the implementation of multiple pion emission to extend the energy range of applicability up to roughly 15GeV. The next step, to account also for strange particle production, both for refining the high-energy domain and making it usable when strangeness appears, requires the following main ingredients: i) the relevant elementary cross sections (production, scattering, and absorption) and ii) the characteristics of the associated final states. Some of those ingredients are already known and, sometimes, already used in models of the same type (e.g., Bertini, GiBUU), but this paper aims at reviewing the situation by compiling, updating, and comparing the necessary elementary information which are independent of the model used.

Supplementary material

13360_2018_12312_MOESM1_ESM.pdf (347 kb)
Supplementary material

References

  1. 1.
    J.-C. David et al., Mem. Soc. Astron. It. 82, 909 (2011) and references thereinADSGoogle Scholar
  2. 2.
    S. Leray et al., J. Korean Phys. Soc. 59, 791 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    D. Mancusi et al., Phys. Rev. C 90, 054602 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    J.-C. David et al., Eur. Phys. J. A 49, 29 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    D. Mancusi et al., Phys. Rev. C 91, 034602 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    J.-L. Rodríguez-Sánchez et al., Phys. Rev. C 96, 054602 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    S. Pedoux, J. Cugnon, Nucl. Phys. A 866, 16 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    S. Pedoux, PhD Thesis, University of Liège (2012). BICTEL/e - ULgGoogle Scholar
  9. 9.
    J.C. David et al., Eur. Phys. J. Plus 133, 253 (2018)CrossRefGoogle Scholar
  10. 10.
    O. Buss et al., Phys. Rep. 512, 1 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 90, 054906 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Nara et al., Phys. Rev. C 61, 024901 (1999) arXiv:nucl-th/9904059 [nucl-th]ADSCrossRefGoogle Scholar
  13. 13.
    S.G. Mashnik, LANL Report LA-UR-08-2931, arXiv:0805.0751v2 [nucl-th] (2008)Google Scholar
  14. 14.
    J. Cugnon, P. Deneye, J. Vandermeulen, Phys. Rev. C 41, 1701 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    Pierre Deneye, PhD Thesis, University of Liège (1991)Google Scholar
  16. 16.
    D.H. Wright, M.H. Kelsey, Nucl. Instrum. Methods Phys. Res.A 804, 175 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    B. Andersson et al., Phys. Rep. 97, 31 (1983)ADSCrossRefGoogle Scholar
  18. 18.
    K. Tsushima, A. Sibirtsev, A.W. Thomas, G.Q. Li, Phys. Rev. C 59, 369 (1999) 61ADSCrossRefGoogle Scholar
  19. 19.
    A. Baldini, Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, Vols. 12a and 12b (Springer-Verlag, Berlin, 1988)Google Scholar
  20. 20.
    HIRES Collaboration, Phys. Lett. B 692, 10 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    A. Sibirtsev et al., Eur. Phys. J. A 32, 229 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    C. Gini, Variabilità e Mutabilità. Contributo allo Studio delle Distribuzioni e delle Relazioni Statistiche (C. Cuppini, Bologna, 1912) p. 156Google Scholar
  23. 23.
    J. Bystricky, P. La France, F. Lehar, F. Perrot, T. Siemiarczuk, P. Winternitz, J. Phys. 48, 1901 (1987)CrossRefGoogle Scholar
  24. 24.
    G.Q. Li, C.M. Ko, Nucl. Phys. A 594, 439 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    A. Sibirtsev, W. Cassing, C.M. Ko, Z. Phys. A 358, 101 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    A.S. Iljinov et al., Nucl. Phys. A 616, 575 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    Vladimir Uzhinsky, Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)Google Scholar
  28. 28.
    G.I. Kopylov, Sov. Phys. JETP 8, 996 (1959)Google Scholar
  29. 29.
    F. James, CERN 68-15 (1968)Google Scholar
  30. 30.
    C. Daum et al., Nucl. Phys. B 6, 273 (1968)ADSCrossRefGoogle Scholar
  31. 31.
    S. Andersson-Almehed et al., Nucl. Phys. B 21, 515 (1970)ADSCrossRefGoogle Scholar
  32. 32.
    J. Griselin et al., Nucl. Phys. B 93, 189 (1975)ADSCrossRefGoogle Scholar
  33. 33.
    C.J. Adams et al., Nucl. Phys. B 96, 54 (1975)ADSCrossRefGoogle Scholar
  34. 34.
    K. Abe et al., Phys. Rev. D 12, 6 (1975)ADSCrossRefGoogle Scholar
  35. 35.
    B. Conforto et al., Nucl. Phys. B 34, 41 (1971)ADSCrossRefGoogle Scholar
  36. 36.
    Terry S. Mast et al., Phys. Rev. D 14, 13 (1976)ADSCrossRefGoogle Scholar
  37. 37.
    R. Armenteros et al., Nucl. Phys. B 21, 15 (1970)ADSCrossRefGoogle Scholar
  38. 38.
    B. Conforto et al., Nucl. Phys. B 105, 189 (1976)ADSCrossRefGoogle Scholar
  39. 39.
    M. Jones, R. Levi Setti, D. Merrill, Nucl. Phys. B 90, 349 (1975)ADSCrossRefGoogle Scholar
  40. 40.
    M. Alston-Garnjost et al., Phys. Rev. D 17, 2226 (1978)ADSCrossRefGoogle Scholar
  41. 41.
    G.W. London et al., Nucl. Phys. B 85, 289 (1975)ADSCrossRefGoogle Scholar
  42. 42.
    A. Berthon, L.K. Rangan, J. Vrana, Nucl. Phys. B 20, 476 (1970)ADSCrossRefGoogle Scholar
  43. 43.
    A. Berthon, J. Vrana, Nucl. Phys. B 24, 417 (197)Google Scholar
  44. 44.
    T.M. Knasel et al., Phys. Rev. D 11, 1 (1975)ADSCrossRefGoogle Scholar
  45. 45.
    R.D. Baker et al., Nucl. Phys. B 141, 29 (1978)ADSCrossRefGoogle Scholar
  46. 46.
    D.H. Saxon et al., Nucl. Phys. B 162, 522 (1980)ADSCrossRefGoogle Scholar
  47. 47.
    R.D. Baker et al., Nucl. Phys. B 145, 402 (1978)ADSCrossRefGoogle Scholar
  48. 48.
    J.C. Hart et al., Nucl. Phys. B 166, 73 (1980)ADSCrossRefGoogle Scholar
  49. 49.
    M. Winik, S. Toaff, D. Revel, J. Goldberg, L. Berny, Nucl. Phys. B 128, 66 (1977)ADSCrossRefGoogle Scholar
  50. 50.
    D.J. Candlin et al., Nucl. Phys. B 226, 1 (1983)ADSCrossRefGoogle Scholar
  51. 51.
    E.A. Nadaraya, Theory Prob. Appl. 9, 141 (1964)CrossRefGoogle Scholar
  52. 52.
    C.H. Reinsch, Numer. Math. 10, 177 (1967)MathSciNetCrossRefGoogle Scholar
  53. 53.
    T. Sjöstrand, S. Mrenna, P.Z. Skands, JHEP 05, 026 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    B. Andersson, G. Gustafson, G. Ingelman, T. Sjöstrand, Phys. Rep. 97, 2 (1983)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • J. Hirtz
    • 1
    • 2
    Email author
  • J. -C. David
    • 1
  • A. Boudard
    • 1
  • J. Cugnon
    • 3
  • S. Leray
    • 1
  • I. Leya
    • 2
  • D. Mancusi
    • 4
  1. 1.IRFU, CEAUniversité Paris-SaclayGif-sur-YvetteFrance
  2. 2.Space Research and Planetary Sciences, Physics InstituteUniversity of BernBernSwitzerland
  3. 3.AGO departmentUniversity of LiègeLiège 1Belgium
  4. 4.Den-Service d’étude des réacteurs et de mathématiques appliquées (SERMA), CEAUniversité Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations