Lowering cement clinker: A thorough, performance based study on the use of nanoparticles of SiO2 or montmorillonite in Portland limestone nanocomposites

  • Styliani PapatzaniEmail author
  • Kevin Paine
Regular Article


Nanotechnology has changed the way we perceive science, our world and consequently the built environment. Cement sustainability is of primary importance and nanotechnology can offer new alternatives towards lowering the CO2 footprint by reducing clinker, by increasing the by-products content and by creating more durable formulations. This paper presents an optimization protocol of ternary Portland limestone nanocomposites through the addition of nanosilica or nanomontmorillonite (nMt) particles. Thermal gravimetric and X-ray diffraction analyses, confirmed the Ca(OH)2 consumption towards the production of C-S-H. Mercury intrusion porosimetry (MIP) and long-term relative density measurements coupled with field emission scanning electron imaging (FESEM) confirmed the microstructural changes leading to strength enhancement. Lastly, limitations were determined through the extensive study of the addition of nanosilica particles at four different dosages (0.1, 0.5, 1.0, 1.5% addition by total mass of solids) or three different nMt dispersions at five different dosages (0.5, 1.0, 2.0, 4.0 and 5.5%). Strength tests and characterization were carried out at day 1, 7, 28, 56, 90 and 170 to assess both the short- and long-term effects. Nanosilica and inorganic nMt particles were found to be the most effective at lower dosages for strength, hydration and microstructural improvements.


  1. 1.
    CEN, Cement - Part 1: Composition, specifications and conformity criteria for common cements, EN 197-1:2000Google Scholar
  2. 2.
    A.A. Elgalhud, R.K. Dhir, G. Ghataora, Cem. Concr. Compos. 72, 222 (2016)CrossRefGoogle Scholar
  3. 3.
    S. Tsivilis, E. Chaniotakis, E. Badogiannis, G. Pahoulas, A. Ilias, Cem. Concr. Compos. 21, 107 (1999)CrossRefGoogle Scholar
  4. 4.
    F. Lollini, E. Redaelli, L. Bertolini, Cem. Concr. Compos. 46, 32 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Zajac, A. Rossberg, G. Le Saout, B. Lothenbach, Cem. Concr. Compos. 46, 99 (2014)CrossRefGoogle Scholar
  6. 6.
    G.D. Moon, S. Oh, S.H. Jung, Y.C. Choi, Constr. Build. Mater. 135, 129 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Calabria-Holley, S. Papatzani, Adv. Cem. Res. 26, 1 (2014)CrossRefGoogle Scholar
  8. 8.
    S. Papatzani, K. Paine, Adv. Cem. Res. 30, 256 (2018)CrossRefGoogle Scholar
  9. 9.
    S. Papatzani, K. Paine, Dispersed Inorganic or Organomodified Montmorillonite Clay Nanoparticles for Blended Portland Cement Pastes: Effects on Microstructure and Strength, in Nanotechnology in construction, edited by K. Sobolev, S.P. Shah (Springer, Cham, 2015) pp. 131--139,
  10. 10.
    F. Soleymani, J. Am. Sci. 8, 432 (2012)Google Scholar
  11. 11.
    Qing Ye, Z. Zhang, D. Kong, R. Chen, Constr. Build. Mater. 21, 539 (2007)CrossRefGoogle Scholar
  12. 12.
    H. Li, H. Xiao, J. Yuan, J. Ou, Compos. Part B Eng. 35, 185 (2004)CrossRefGoogle Scholar
  13. 13.
    S. Papatzani, Mater. Sci. Technol. 32, 138 (2016)CrossRefGoogle Scholar
  14. 14.
    S. Papatzani, K. Paine, J. Calabria-Holley, Constr. Build. Mater. 74, 219 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Xi, Synthesis, Characterisation and Application of Organoclays (Queensland University of Technology, 2006)Google Scholar
  16. 16.
    L.A. Utracki, Clay-Containing Polymeric Nanocomposites (iSmithers Rapra Publishing, 2004)Google Scholar
  17. 17.
    A.A. Sapalidis, F.K. Katsaros, N.K. Kanellopoulos, PVA/Montmorillonite Nanocomposites: Development and Properties, in Nanocomposites Polymers with Analytical Methods, edited by J. Cuppoletti (InTech, 2011)
  18. 18.
    S.G. Jahromi, B. Andalibizade, S. Vossough, Arab. J. Sci. Eng. Sect. B Eng. 35, 90 (2010)Google Scholar
  19. 19.
    S. Papatzani, K. Paine, Nanocomposites 3, 2 (2017)CrossRefGoogle Scholar
  20. 20.
    J. Wheeler, S. Polak, The use of Nanomaterials in UK Universities: An Overview of Occupational Health and Safety (2013)Google Scholar
  21. 21.
    J. Freeland, J. Hulme, D. Kinninson, A. Mitchell, P. Veitch, R. Aitken, Working Safely with Nanomaterials in Research & Development (2012)
  22. 22.
    Health and Sefety Executive, Review of the adequacy of current regulatory regimes to secure effective regulation of nanoparticles created by nanotechnology (2006)Google Scholar
  23. 23.
  24. 24.
    J. Calabria-Holley, S. Papatzani, B. Naden, J. Mitchels, K. Paine, Appl. Clay Sci. 143, 67 (2017)CrossRefGoogle Scholar
  25. 25.
    S. Papatzani, K. Paine, J. Calabria-Holley, The effect of the addition of nanoparticles of silica on the strength and microstructure of blended Portland cement pastes, Boston, May 12–15, Int. Concr. Sustain. Conf. (2014)
  26. 26.
    S. Papatzani, K. Paine, Adv. Cem. Res. 30, 256 (2018)CrossRefGoogle Scholar
  27. 27.
    J. Calabria-Holley, K. Paine, S. Papatzani, Adv. Cem. Res. 27, 187 (2015)CrossRefGoogle Scholar
  28. 28.
    J. Zhang, G.W. Scherer, Cem. Concr. Res. 41, 1024 (2011)CrossRefGoogle Scholar
  29. 29.
    G. Bye, P. Livesey, L. Struble, Portland Cement (ICE Publishing, 2011)
  30. 30.
    K. De Weerdt, M. Ben Haha, G. Le Saout, K.O. Kjellsen, H. Justnes, B. Lothenbach, Cem. Concr. Res. 41, 279 (2011)CrossRefGoogle Scholar
  31. 31.
    S. Papatzani, K. Paine, J. Holley, Cem. Appl. 2014, 80 (2014) (in Russian)Google Scholar
  32. 32.
    S. Tsivilis, E. Chaniotakis, G. Kakali, G. Batis, Cem. Concr. Compos. 24, 371 (2002)CrossRefGoogle Scholar
  33. 33.
    A.A. Ramezanianpour, E. Ghiasvand, I. Nickseresht, M. Mahdikhani, F. Moodi, Cem. Concr. Compos. 31, 715 (2009)CrossRefGoogle Scholar
  34. 34.
    M.S. Meddah, M.C. Lmbachiya, R.K. Dhir, Constr. Build. Mater. 58, 193 (2014)CrossRefGoogle Scholar
  35. 35.
    A. Marzouki, A. Lecomte, A. Beddey, C. Diliberto, M. Ben Ouezdou, Constr. Build. Mater. 48, 1145 (2013)CrossRefGoogle Scholar
  36. 36.
    W.Y. Kuo, J.S. Huang, C.H. Lin, Cem. Concr. Res. 36, 886 (2006)CrossRefGoogle Scholar
  37. 37.
    N.C. Collier, Ceram. - Silikaty 60, 338 (2016)Google Scholar
  38. 38.
    V.G. Papadakis, Cem. Concr. Res. 29, 1727 (1999)CrossRefGoogle Scholar
  39. 39.
    R.M.H. Lawrence, T.J. Mays, P. Walker, D. D’Ayala, J. Therm. Anal. Calorim. 85, 377 (2006)CrossRefGoogle Scholar
  40. 40.
    P. Hou, J. Qian, X. Cheng, S.P. Shah, Cem. Concr. Compos. 55, 250 (2015)CrossRefGoogle Scholar
  41. 41.
    S.P. Shah, P. Hou, M.S. Konsta-Gdoutos, J. Sustain. Cement-based Mater. 5, 1 (2015)Google Scholar
  42. 42.
    B. Lothenbach, G. Le Saout, E. Gallucci, K. Scrivener, Cem. Concr. Res. 38, 848 (2008)CrossRefGoogle Scholar
  43. 43.
    T.D. Dyer, R.K. Dhir, Cem. Concr. Res. 34, 849 (2004)CrossRefGoogle Scholar
  44. 44.
    S. Papatzani, Nanotechnologically modified cements: Effects on hydration, microstructure and physical properties (University of Bath, 2014)Google Scholar
  45. 45.
    T.P. Chang, J.Y. Shih, K.M. Yang, T.C. Hsiao, J. Mater. Sci. 42, 7478 (2007)CrossRefGoogle Scholar
  46. 46.
    X. He, X. Shi, Transp. Res. Rec. J. Transp. Res. Board. 2070, 13 (2008)CrossRefGoogle Scholar
  47. 47.
    P. Hosseini, R. Hosseinpourpia, A. Pajum, M.M. Khodavirdi, H. Izadi, A. Vaezi, Constr. Build. Mater. 66, 113 (2014)CrossRefGoogle Scholar
  48. 48.
    S. Papatzani, S. Grammatikos, B. Adl-Zarrabi, K. Paine, AIP. Conf. Proc. 1957, 030004 (2018)CrossRefGoogle Scholar
  49. 49.
    S. Diamond, Cem. Concr. Res. 30, 1517 (2000)CrossRefGoogle Scholar
  50. 50.
    A.B. Abell, K.L. Willis, D.A. Lange, J. Colloid Interface Sci. 211, 39 (1999)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hellenic Ministry of CultureDirectorate of Restoration of Medieval & Post-medieval MonumentsAthensGreece
  2. 2.School of Environment and TechnologyUniversity of BrightonBrightonUK
  3. 3.BRE Centre for Innovative Construction MaterialsUniversity of BathBathUK

Personalised recommendations