Advertisement

On wave dispersion characteristics of magneto-electro-elastic nanotubes considering the shell model based on the nonlocal strain gradient elasticity theory

  • M. Dehghan
  • F. EbrahimiEmail author
Regular Article

Abstract.

In the present study, wave propagation analysis of magneto-electro-elastic (MEE) nanotubes considering the shell model is explored in the framework of the nonlocal strain gradient elasticity theory. To take the small-scale effects into account, the nonlocal elasticity theory of Eringen is applied. Nonlocal governing equations of MEE nanotube have been derived utilizing Hamilton’s principle. The outcomes of this paper have been validated by comparing them with previous investigations. An analytical solution of governing equations is used to obtain phase velocities and wave frequencies. The influence of different parameters, such as different mode, nonlocal parameter, length parameter, geometry, magnetic field and electric field on wave propagation characteristics of MEE nanotube are reported in detail.

References

  1. 1.
    Y. Wang, J.M. Hu, Y.H. Lin, C.W. Nan, NPG Asia Mater. 2, 61 (2010)CrossRefGoogle Scholar
  2. 2.
    R. Chowdhury et al., Comput. Mater. Sci. 48, 730 (2010)CrossRefGoogle Scholar
  3. 3.
    R. Chowdhury, S. Adhikari, F. Scarpa, Appl. Phys. A 102, 301 (2011)CrossRefGoogle Scholar
  4. 4.
    A.C. Eringen, Int. J. Eng. Sci. 10, 425 (1972)CrossRefGoogle Scholar
  5. 5.
    A. Eringen Cemal, J. Appl. Phys. 54, 4703 (1983)CrossRefGoogle Scholar
  6. 6.
    F.A.C.M. Yang, D.C.C. Lam, P. Tong, Int. J. Solids Struct. 39, 2731 (2002)CrossRefGoogle Scholar
  7. 7.
    J.N. Reddy, Int. J. Eng. Sci. 45, 288 (2007)CrossRefGoogle Scholar
  8. 8.
    A. Tounsi, S. Benguediab, B. Adda, A. Semmah, M. Zidour, Adv. Nano Res. 1, 1 (2013)CrossRefGoogle Scholar
  9. 9.
    L. Li, Y. Hu, Int. J. Mech. Sci. 120, 159 (2017)CrossRefGoogle Scholar
  10. 10.
    F. Ebrahimi, E. Salari, Mech. Adv. Mater. Struct. 23, 1379 (2015)CrossRefGoogle Scholar
  11. 11.
    F. Ebrahimi, E. Salari, Acta Astron. 113, 29 (2015)CrossRefGoogle Scholar
  12. 12.
    L. Li, Y. Hu, L. Ling, Compos. Struct. (2015)  https://doi.org/10.1016/j.compstruct.2015.08.014
  13. 13.
    F. Ebrahimi, P. Nasirzadeh, J. Theor. Appl. Mech. 53, 1041 (2015)CrossRefGoogle Scholar
  14. 14.
    F. Ebrahimi, S.H.S. Hosseini, J. Therm. Stresses 39, 606 (2016)CrossRefGoogle Scholar
  15. 15.
    Fahimeh Mehralian, Yaghoub Tadi Beni, Mehran Karimi Zeverdejani, Physica B 521, 102 (2017)CrossRefGoogle Scholar
  16. 16.
    F. Ebrahimi, M.R. Barati, Appl. Phys. A 122, 880 (2016)CrossRefGoogle Scholar
  17. 17.
    L. Li, Y. Hu, Comput. Mater. Sci. 112, 282 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Narendar, S. Gopalakrishnan, Comput. Mater. Sci. 47, 526 (2009)CrossRefGoogle Scholar
  19. 19.
    S. Narendar, S. Gopalakrishnan, Composites B 43, 1275 (2011)CrossRefGoogle Scholar
  20. 20.
    S. Narendar, S. Gopalakrishnan, Appl. Math. Model. 36, 4529 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    A.G. Arani, R. Kolahchi, S.A. Mortazavi, Int. J. Mech. Mater. Des. 10, 179 (2014)CrossRefGoogle Scholar
  22. 22.
    L. Li, Y. Hu, L. Ling, Physica E 75, 118 (2016)CrossRefGoogle Scholar
  23. 23.
    F. Ebrahimi, M.R. Barati, A. Dabbagh, Appl. Phys. A 122, 949 (2016)CrossRefGoogle Scholar
  24. 24.
    F. Ebrahimi, E. Salari, Compos. Struct. 128, 363 (2015)CrossRefGoogle Scholar
  25. 25.
    F. Ebrahimi, M.R. Barati, Eur. Phys. J. Plus 131, 279 (2016)CrossRefGoogle Scholar
  26. 26.
    F. Ebrahimi, M.R. Barati, Mech. Adv. Mater. Struct. 24, 924 (2017)CrossRefGoogle Scholar
  27. 27.
    F. Ebrahimi, M.R. Barati, Int. J. Smart Nano Mater. 7, 69 (2016)CrossRefGoogle Scholar
  28. 28.
    F. Ebrahimi, E. Salari, Compos. Part B Eng. 78, 272 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Baninajjaryan, Y. Tadi Beni, J. Theor. Biol. 382, 111 (2015)CrossRefGoogle Scholar
  30. 30.
    H. Zeighampour, Y. Tadi Beni, F. Mehralian, Acta Mech. 226, 2607 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    F. Mehralian, Y. Tadi Beni, R. Ansari, Int. J. Mech. Sci. 119, 155 (2016)CrossRefGoogle Scholar
  32. 32.
    K.M. Liew, Q. Wang, Int. J. Eng. Sci. 45, 227 (2007)CrossRefGoogle Scholar
  33. 33.
    Y. Hu, K.M. Liew, Q. Wang, X.Q. He, B.I. Yakobson, J. Mech. Phys. Solids 56, 3475 (2008)CrossRefGoogle Scholar
  34. 34.
    J. Yu, Q. Ma, S. Su, Ultrasonics 48, 664 (2008)CrossRefGoogle Scholar
  35. 35.
    M. Abdollahian, A. Ghorbanpour Arani, A.A. Mosallaie Barzoki, R. Kolahchi, A. Loghman, Physica B 418, 1 (2013)CrossRefGoogle Scholar
  36. 36.
    A.G. Arani et al., Compos. Part B 43, 195 (2012)CrossRefGoogle Scholar
  37. 37.
    A.G. Arani et al., Compos. Part B 51, 291 (2013)CrossRefGoogle Scholar
  38. 38.
    L.L. Ke, Y.S. Wang, J.N. Reddy, Compos. Struct. 116, 626 (2014)CrossRefGoogle Scholar
  39. 39.
    R. Ansari et al., Microfluid. Nanofluid. 19, 509 (2015)CrossRefGoogle Scholar
  40. 40.
    S. Sahmani, M.M. Aghdam, M. Bahrami, Compos. Struct. 131, 414 (2015)CrossRefGoogle Scholar
  41. 41.
    H. Zeighampour, Y.T. Beni, I. Karimipour, Microfluid. Nanofluid. 21, 85 (2017)CrossRefGoogle Scholar
  42. 42.
    R.K. Bhangale, N. Ganesan, J. Sound Vib. 228, 412 (2005)CrossRefGoogle Scholar
  43. 43.
    R.A. Toupin, Arch. Ration. Mech. Anal. 11, 385 (1962)MathSciNetCrossRefGoogle Scholar
  44. 44.
    R.D. Mindlin, Arch. Ration. Mech. Anal. 16, 51 (1964)MathSciNetCrossRefGoogle Scholar
  45. 45.
    R.D. Mindlin, Int. J. Solids Struct. 1, 417 (1965)CrossRefGoogle Scholar
  46. 46.
    W. Koiter, A consistent first approximation in the general theory of thin elastic shells: Theory of thin elastic shells (1960) pp. 12--33Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mechanical Engineering Department, Faculty of EngineeringImam Khomeini International UniversityQazvinIran

Personalised recommendations