Advertisement

DFT studies on geometrical structures, stabilities, and electronic properties of AlnCr(n = 1-24) clusters

  • Yawen Hua
  • Yiliang LiuEmail author
  • Jun Chen
Regular Article
  • 57 Downloads

Abstract.

As a transition metal element, chromium (Cr) has attracted enormous attention for its promotion on stability and magnetic properties of aluminium (Al) based materials. However, the direct experimental evidence for determining the specific locations of transition metal dopants is a challenging issue in material science. Equilibrium geometries, stabilities, electronic and magnetic properties of AlnCr(n = 1-24) clusters were studied using the density functional theory. It was found that Cr dopants stabilized the Al clusters. And, they were located at surfaces of the clusters for small AlnCr(n = 1-16) clusters. Then, with cluster size increasing, Cr dopants transit to interiors of the clusters gradually. During the doping process, electrons transfer from Al(3s) to Cr(4p) orbitals. Besides, charge transfers of \(\mathrm{Al}(3s) \rightarrow \mathrm{Al}(3p)\) and \(\mathrm{Cr}(4s) \rightarrow \mathrm{Cr}(4p)\) were discovered within Al atoms and Cr atoms, respectively. Spin magnetic moments for most of these clusters were more than one \(\mu_{\mathrm{B}}\). The 3d electrons were found to be the primary reason for magnetism. This research would be helpful for studying transition metal doping in small metal clusters.

Supplementary material

13360_2018_12302_MOESM1_ESM.pdf (145 kb)
Supplementary material

References

  1. 1.
    Z. Wu, H. Liu, T. Li, J. Liu, J. Yin, O.F. Mohammed, O.M. Bakr, Y. Liu, B. Yang, H. Zhang, J. Am. Chem. Soc. 139, 4318 (2017)CrossRefGoogle Scholar
  2. 2.
    S. Yang, J. Chai, Y. Song, J. Fan, T. Chen, S. Wang, H. Yu, X. Li, M. Zhu, J. Am. Chem. Soc. 139, 5668 (2017)CrossRefGoogle Scholar
  3. 3.
    Z. Luo, A.W. Castleman, S.N. Khanna, Chem. Rev. 116, 14456 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Jia, J.Z. Wang, X. Liu, Q.K. Xue, Z.Q. Li, Y. Kawazoe, S.B. Zhang, Appl. Phys. Lett. 80, 3186 (2002)CrossRefGoogle Scholar
  5. 5.
    P.J. Roach, W.H. Woodward, A.W. Castleman, A.C. Reber, S.N. Khanna, Science 323, 492 (2009)CrossRefGoogle Scholar
  6. 6.
    Y.S. Luo, Y.N. Yang, J.H. Weaver, L.T. Florez, C.J. Palmstrom, Phys. Rev. B 49, 1893 (1994)CrossRefGoogle Scholar
  7. 7.
    F.C. Chuang, C. Wang, K. Ho, Phys. Rev. B 73, 125431 (2006)CrossRefGoogle Scholar
  8. 8.
    B.K. Rao, P. Jena, J. Chem. Phys. 111, 1890 (1999)CrossRefGoogle Scholar
  9. 9.
    L.M. Wang, W. Huang, L.S. Wang, B.B. Averkiev, A.I. Boldyrev, J. Chem. Phys. 130, 134303 (2009)CrossRefGoogle Scholar
  10. 10.
    B.B. Averkiev, A.I. Boldyrev, X. Li, L.S. Wang, J. Chem. Phys. 125, 1 (2006)CrossRefGoogle Scholar
  11. 11.
    X. Li, L.S. Wang, Eur. Phys. J. D 34, 9 (2005)CrossRefGoogle Scholar
  12. 12.
    Z.Y. Jiang, C.J. Yang, S.T. Li, J. Chem. Phys. 123, 204315 (2005)CrossRefGoogle Scholar
  13. 13.
    B.K. Rao, P. Jena, J. Chem. Phys. 115, 778 (2001)CrossRefGoogle Scholar
  14. 14.
    V. Kumar, S. Bhattacharjee, Phys. Rev. B - Condens. Matter Mater. Phys. 61, 8541 (2000)CrossRefGoogle Scholar
  15. 15.
    M. Akutsu, K. Koyasu, J. Atobe, K. Miyajima, M. Mitsui, H. Tsunoyama, A. Nakajima, Phys. Chem. Chem. Phys. 19, 20401 (2017)CrossRefGoogle Scholar
  16. 16.
    O.P. Charkin, D.O. Charkin, N.M. Klimenko, A.M. Mebel, Chem. Phys. Lett. 365, 494 (2002)CrossRefGoogle Scholar
  17. 17.
    Y. Hua, Y. Liu, G. Jiang, J. Du, J. Chen, J. Phys. Chem. A 117, 2590 (2013)CrossRefGoogle Scholar
  18. 18.
    Y. Hua, Y. Liu, G. Jiang, J. Chen, Eur. Phys. J. D 67, 267 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Wang, X. Huang, Z. Du, Y. Li, Chem. Phys. Lett. 480, 258 (2009)CrossRefGoogle Scholar
  20. 20.
    R. Pal, L.F. Cui, S. Bulusu, H.J. Zhai, L.S. Wang, X.C. Zeng, J. Chem. Phys. 128, 024305 (2008)CrossRefGoogle Scholar
  21. 21.
    O.C. Thomas, W.J. Zheng, T.P. Lippa, S.J. Xu, S.A. Lyapustina, K.H. Bowen, J. Chem. Phys. 114, 9895 (2001)CrossRefGoogle Scholar
  22. 22.
    W.-M. Sun, Y. Li, D. Wu, Z.-R. Li, Phys. Chem. Chem. Phys. 14, 16467 (2012)CrossRefGoogle Scholar
  23. 23.
    K.O. Alcantar-Medina, M. Herrera-Trejo, A. Tlahuice-Flores, S. Martinez-Vargas, J. Oliva, A.I. Martinez, Comput. Theor. Chem. 1099, 55 (2017)CrossRefGoogle Scholar
  24. 24.
    E.F. Rexer, J. Jellinek, E.B. Krissinel, E.K. Parks, S.J. Riley, J. Chem. Phys. 117, 82 (2002)CrossRefGoogle Scholar
  25. 25.
    C.J. Wang, X.Y. Kuang, H.Q. Wang, H.F. Li, A.J. Mao, Comput. Theor. Chem. 980, 7 (2012)CrossRefGoogle Scholar
  26. 26.
    S.N. Khanna, C. Ashman, B.K. Rao, P. Jena, J. Chem. Phys. 114, 9792 (2001)CrossRefGoogle Scholar
  27. 27.
    N.S. Khetrapal, T. Jian, G.V. Lopez, S. Pande, L.S. Wang, X.C. Zeng, J. Phys. Chem. C 121, 18234 (2017)CrossRefGoogle Scholar
  28. 28.
    K. Koyasu, M. Akutsu, J. Atobe, M. Mitsui, A. Nakajima, Chem. Phys. Lett. 421, 534 (2006)CrossRefGoogle Scholar
  29. 29.
    A. Varano, D.J. Henry, I. Yarovsky, J. Phys. Chem. A 114, 3602 (2010)CrossRefGoogle Scholar
  30. 30.
    A. Pramann, A. Nakajima, K. Kaya, J. Chem. Phys. 115, 5404 (2001)CrossRefGoogle Scholar
  31. 31.
    C. Lacaze-Dufaure, C. Blanc, G. Mankowski, C. Mijoule, Surf. Sci. 601, 1544 (2007)CrossRefGoogle Scholar
  32. 32.
    T. Sengupta, S. Das, S. Pal, J. Phys. Chem. C 120, 10027 (2016)CrossRefGoogle Scholar
  33. 33.
    M.Q. Fan, F. Xu, L.X. Sun, Int. J. Hydrogen Energy 32, 2809 (2007)CrossRefGoogle Scholar
  34. 34.
    S. Das, S. Pal, S. Krishnamurty, J. Phys. Chem. C 118, 19869 (2014)CrossRefGoogle Scholar
  35. 35.
    L. Wang, J. Zhao, Z. Zhou, S.B. Zhang, Z. Chen, J. Comput. Chem. 30, 2509 (2009)CrossRefGoogle Scholar
  36. 36.
    D.J. Henry, A. Varano, I. Yarovsky, J. Phys. Chem. A 113, 5832 (2009)CrossRefGoogle Scholar
  37. 37.
    D.J. Henry, I. Yarovsky, J. Phys. Chem. A 113, 2565 (2009)CrossRefGoogle Scholar
  38. 38.
    J. Vanbuel, M. ye Jia, P. Ferrari, S. Gewinner, W. Schöllkopf, M.T. Nguyen, A. Fielicke, E. Janssens, Top. Catal. 61, 62 (2018)CrossRefGoogle Scholar
  39. 39.
    J. Vanbuel, E.M. Fernández, P. Ferrari, S. Gewinner, W. Schöllkopf, L.C. Balbás, A. Fielicke, E. Janssens, Chem. A Eur. J. 23, 15638 (2017)CrossRefGoogle Scholar
  40. 40.
    H. Yang, Y. Zhang, H. Chen, J. Chem. Phys. 141, 064302 (2014)CrossRefGoogle Scholar
  41. 41.
    X. Li, A.E. Kuznetsov, H.F. Zhang, A.I. Boldyrev, L.S. Wang, Science 291, 859 (2001)CrossRefGoogle Scholar
  42. 42.
    X. Li, H. Zhang, L. Wang, A.E. Kuznetsov, N.A. Cannon, A.I. Boldyrev, Angew. Chem. 113, 1919 (2001)CrossRefGoogle Scholar
  43. 43.
    G.X. Ge, Y. Han, J.G. Wan, J.J. Zhao, G.H. Wang, J. Chem. Phys. 139, 174309 (2013)CrossRefGoogle Scholar
  44. 44.
    B. Fan, G.X. Ge, C.H. Jiang, G.H. Wang, J.G. Wan, Sci. Rep. 7, 1 (2017)CrossRefGoogle Scholar
  45. 45.
    Y. Li, N.M. Tam, A.P. Woodham, J.T. Lyon, Z. Li, P. Lievens, A. Fielicke, M.T. Nguyen, E. Janssens, J. Phys. Chem. C 120, 19454 (2016)CrossRefGoogle Scholar
  46. 46.
    G.X. Ge, H.X. Yan, J.M. Yang, L. Zhou, J.G. Wan, J.J. Zhao, G.H. Wang, Phys. A Stat. Mech. Appl. 453, 194 (2016)CrossRefGoogle Scholar
  47. 47.
    N.T. Tung, N.M. Tam, M.T. Nguyen, P. Lievens, E. Janssens, J. Chem. Phys. 141, 044311 (2014)CrossRefGoogle Scholar
  48. 48.
    J. Esquivel, R.K. Gupta, Acta Metall. Sin. 30, 333 (2017)CrossRefGoogle Scholar
  49. 49.
    A. Almeida, P.A. Carvalho, R. Vilar, Mater. Sci. Forum 514--516, 490 (2006)CrossRefGoogle Scholar
  50. 50.
    Y. Liu, Y. Hua, G. Jiang, J. Chen, Acta Phys.-Chim. Sin. 31, 1315 (2015)CrossRefGoogle Scholar
  51. 51.
    S.M. Lang, P. Claes, S. Neukermans, E. Janssens, J. Am. Soc. Mass Spectrom. 22, 1508 (2011)CrossRefGoogle Scholar
  52. 52.
    H.A. Hussein, I. Demiroglu, R.L. Johnston, Eur. Phys. J. B 91, 34 (2018)CrossRefGoogle Scholar
  53. 53.
    J.B.A. Davis, S.L. Horswell, R.L. Johnston, J. Phys. Chem. C 120, 3759 (2016)CrossRefGoogle Scholar
  54. 54.
    I. Demiroglu, K. Yao, H.A. Hussein, R.L. Johnston, J. Phys. Chem. C 121, 10773 (2017)CrossRefGoogle Scholar
  55. 55.
    F. Buendía, J.A. Vargas, M.R. Beltrán, J.B.A. Davis, R.L. Johnston, Phys. Chem. Chem. Phys. 18, 22122 (2016)CrossRefGoogle Scholar
  56. 56.
    H.A. Hussein, J.B.A. Davis, R.L. Johnston, Phys. Chem. Chem. Phys. 18, 26133 (2016)CrossRefGoogle Scholar
  57. 57.
    D. Palagin, J.P.K. Doye, Phys. Chem. Chem. Phys. 17, 28010 (2015)CrossRefGoogle Scholar
  58. 58.
    H. Akbarzadeh, M. Abbaspour, J. Alloys Compd. 694, 1287 (2017)CrossRefGoogle Scholar
  59. 59.
    H. Akbarzadeh, A.N. Shamkhali, E. Mehrjouei, Phys. Chem. Chem. Phys. 19, 3763 (2017)CrossRefGoogle Scholar
  60. 60.
    J. Timoshenko, K.R. Keller, A.I. Frenkel, J. Chem. Phys. 146, 114201 (2017)CrossRefGoogle Scholar
  61. 61.
    J.W. Hewage, Mater. Chem. Phys. 149-150, 663 (2015)CrossRefGoogle Scholar
  62. 62.
    M.H. Ghatee, K. Shekoohi, Fluid Phase Equilib. 355, 114 (2013)CrossRefGoogle Scholar
  63. 63.
    G. Zanti, D. Peeters, J. Phys. Chem. A 114, 10345 (2010)CrossRefGoogle Scholar
  64. 64.
    J. Du, X. Sun, D. Meng, P. Zhang, G. Jiang, J. Chem. Phys. 131, 044313 (2009)CrossRefGoogle Scholar
  65. 65.
    F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993)CrossRefGoogle Scholar
  66. 66.
    B. Delley, J. Chem. Phys. 113, 7756 (2000)CrossRefGoogle Scholar
  67. 67.
    B. Delley, J. Chem. Phys. 92, 508 (1990)CrossRefGoogle Scholar
  68. 68.
    B. Delley, J. Chem. Phys. 94, 7245 (1991)CrossRefGoogle Scholar
  69. 69.
    A.D. Becke, J. Chem. Phys. 88, 2547 (1988)CrossRefGoogle Scholar
  70. 70.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)CrossRefGoogle Scholar
  71. 71.
    B.G. Pfrommer, M. Coté, S.G. Louie, M.L. Cohen, J. Comput. Phys. 131, 233 (1997)CrossRefGoogle Scholar
  72. 72.
    M.F. Cai, T.P. Dzugan, V.E. Bondybey, Chem. Phys. Lett. 155, 430 (1989)CrossRefGoogle Scholar
  73. 73.
    Z. Fu, G.W. Lemire, G.A. Bishea, M.D. Morse, J. Chem. Phys. 93, 8420 (1990)CrossRefGoogle Scholar
  74. 74.
    J.R. Lombardi, B. Davis, Chem. Rev. 102, 2431 (2002)CrossRefGoogle Scholar
  75. 75.
    Y. Liu, Y. Hua, M. Jiang, G. Jiang, J. Chen, J. Chem. Phys. 136, 084703 (2012)CrossRefGoogle Scholar
  76. 76.
    H. Cheng, L.S. Wang, Phys. Rev. Lett. 77, 51 (1996)CrossRefGoogle Scholar
  77. 77.
    H. Otte, W. Montague, D. Welch, J. Appl. Phys. 34.10, 3149 (1963)CrossRefGoogle Scholar
  78. 78.
    W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)CrossRefGoogle Scholar
  79. 79.
    S.N. Khanna, P. Jena, Phys. Rev. B 51, 13705 (1995)CrossRefGoogle Scholar
  80. 80.
    J.A. Lodya, P. Smit, H.L. Alberts, J. Appl. Phys. 87, 4888 (2000)CrossRefGoogle Scholar
  81. 81.
    E. Fawcett, H.L. Alberts, V.Y. Galkin, D.R. Noakes, J.V. Yakhmi, Rev. Mod. Phys. 66, 25 (1994)CrossRefGoogle Scholar
  82. 82.
    K. Schwarz, P. Blaha, S.B. Trickey, Mol. Phys. 108, 3147 (2010)CrossRefGoogle Scholar
  83. 83.
    Q.H. Yuan, J. Li, Z.F. Liu, Phys. Chem. Chem. Phys. 13, 9871 (2011)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Electrical and Information EngineeringSouthwest Minzu UniversityChengduChina
  2. 2.National Key Laboratory for Surface Physics & ChemistryMianyangChina

Personalised recommendations