Advertisement

Dynamic analysis and synchronization of conformable fractional-order chaotic systems

  • Yan WangEmail author
Regular Article

Abstract.

In this paper, chaotic systems based on the conformable fractional-order derivative are investigated. First, some comments on the discrete Conformable Adomian decomposition method (discrete CADM) proposed recently are made. We demonstrate that the discrete CADM is not globally accurate for conformable fractional-order differential equations and some conclusions about conformable fractional-order chaotic systems in present papers based on the discrete CADM are inappropriate. Second, we restudy the conformable fractional-order simplified Lorenz system. And then, the conformable fractional-order Liu system is introduced and studied. The basic dynamical behaviors of the systems are analyzed in detail, such as dissipation, the equilibrium points and their stability, Lyapunov exponents, bifurcation diagrams, phase portraits and time series of states. Some interesting dynamic behaviors different from the Caputo or Riemann-Liouville fractional-order chaotic system are discovered. It is found that the system order of the commensurate case for chaos is \(q \in (0,1]\). However, for the incommensurate case, dissipation and stability of equilibrium points depend on system order qi and time t which may cause chaotic transients or period-doubling oscillation. In addition, the dynamic behaviors of conformable fractional-order chaotic systems will be static as \(t \rightarrow + \infty\) which is named “dynamic death”. Finally, synchronization between conformable fractional-order simplified Lorenz system and conformable fractional-order Liu system is realized.

References

  1. 1.
    M.S. Tavazoei, M. Haeri, S. Jafari, S. Bolouki, M. Siami, IEEE Trans. Ind. Electron 55, 4049 (2008)CrossRefGoogle Scholar
  2. 2.
    I. Petráš, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (High Education Press, Beijing, 2011)Google Scholar
  3. 3.
    R.R. Khalil, M.A. Horani, A. Yousef, J. Comput. Appl. Math. 264, 65 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    T. Abdeljawad, J. Comput. Appl. Math. 279, 57 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Souahi, A. Ben Makhlouf, M.A. Hammami, Indag. Math.-New Ser. 28, 1265 (2017)CrossRefGoogle Scholar
  6. 6.
    R.R. Khalil, M.A. Hammad, Int. J. Pure Appl. Math. 94, 383 (2014)Google Scholar
  7. 7.
    W.S. Chung, J. Comput. Appl. Math. 290, 150 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Y. Cenesiz, A. Kurt, E. Nane, Statist. Probab. Lett. 124, 126 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    H.W. Zhou, S. Yang, S.Q. Zhang, Physica A 491, 1001 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    C. Li, J. Yan, Chaos, Solitons Fractals 32, 751 (2007)CrossRefGoogle Scholar
  11. 11.
    Z.M. Ge, C.Y. Ou, Chaos, Solitons Fractals 34, 262 (2007)CrossRefGoogle Scholar
  12. 12.
    I. Petráš, Chaos, Solitons Fractals 38, 140 (2008)CrossRefGoogle Scholar
  13. 13.
    C.G. Li, G.R. Chen, Phys. A 341, 55 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    J.G. Lu, G.R. Chen, Chaos, Solitons Fractals 27, 685 (2006)CrossRefGoogle Scholar
  15. 15.
    V. Daftardar-Gejji, S. Bhalekar, Comput. Math. Appl. 59, 1117 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Dumlu, K. Erenturk, IEEE Trans. Ind. Electron. 61, 3417 (2014)CrossRefGoogle Scholar
  17. 17.
    I.N. Doye, H. Voos, M. Darouach, IEEE J. EM. SEL. TOP. C 3, 442 (2013)Google Scholar
  18. 18.
    M.K. Shukla, B.B. Sharma, Chaos, Solitons Fractals 102, 274 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    D. Ding, D. Qi, Q. Wang, IET Contr. Theory Appl. 9, 681 (2015)CrossRefGoogle Scholar
  20. 20.
    S.B. He, K.H. Sun, X.Y. Mei, B. Yan, S.W. Xu, Eur. Phys. J. Plus 132, 36 (2017)CrossRefGoogle Scholar
  21. 21.
    J. Ruan, K. Sun, J. Mou, S. He, L. Zhang, Eur. Phys. J. Plus 133, 3 (2018)CrossRefGoogle Scholar
  22. 22.
    S.B. He, K.H. Sun, B. Santo, Eur. Phys. J. Plus 131, 254 (2016)CrossRefGoogle Scholar
  23. 23.
    K.H. Sun, J.C. Sprott, Int. J. Bifurc. Chaos 19, 1357 (2009)CrossRefGoogle Scholar
  24. 24.
    L. Martinez, J.J. Rosales, C.A. Carreño, J.M. Lozano, Int. J. Circ. Theor. Appl. 46, 1091 (2018)CrossRefGoogle Scholar
  25. 25.
    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations