Advertisement

Theoretical analysis of vibration energy harvesters with nonlinear damping and nonlinear stiffness

  • Dongmei Huang
  • Ruihong Li
  • Shengxi ZhouEmail author
  • Grzegorz Litak
Regular Article
  • 108 Downloads

Abstract.

Theoretical analysis of the vibration energy harvesters with nonlinear damping and nonlinear stiffness is provided to reveal their physical mechanism. Both the method of multiple scales and the method of averaging are employed to derive the theoretical solutions of the output voltage and power of the harvesters. The corresponding theoretical solutions are verified by direct numerical simulations. The nonlinear response characteristics are conducted by combining the stability analysis and the classification of the theoretical solutions. Especially, the dynamical hysteresis criterion which is used to determine the softening or hardening property is derived for enhancing energy harvesting performance. Meanwhile, the backbone curve is obtained. In addition, the influence of the excitation amplitude, the stiffness, the damping exponent, and the electromechanical coupling coefficient on the output power of the harvesters is explored. Overall, the physical mechanism of the harvesters is revealed and a framework for the optimization of maximizing the output power is provided.

References

  1. 1.
    A. Erturk, D.J. Inman, Piezoelectric Energy Harvesting (John Wiley & Sons, New York, 2011)Google Scholar
  2. 2.
    L. Chen, W. Jiang, M. Panyam, M.F. Daqaq, J. Vib. Acoust. 138, 061007 (2016)CrossRefGoogle Scholar
  3. 3.
    S. Zhou, J. Cao, A. Erturk, J. Lin, Appl. Phys. Lett. 102, 173901 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Li, Y. Yang, X. Wang, B. Liu, X. Liang, J. Sound Vib. 428, 72 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    L. Zhao, S.C. Conlon, F. Semperlotti, Smart Mater. Struct. 23, 065021 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    H. Heidari, A. Afifi, Eur. Phys. J. Plus 132, 233 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Roundy, P.K. Wright, Smart Mater. Struct. 13, 1131 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    S. Zhao, A. Erturk, Smart Mater. Struct. 22, 015002 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    S. Zhou, J. Wang, AIP Adv. 8, 075221 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    P.D. Mitcheson, T.C. Green, E.M. Yeatman, Microsyst. Technol. 13, 1629 (2007)CrossRefGoogle Scholar
  11. 11.
    Z. Yang, S. Zhou, J. Zu, D.J. Inman, Joule 2, 642 (2018)CrossRefGoogle Scholar
  12. 12.
    X. Wang, Z. Shi, J. Wang, H. Xiang, Smart Mater. Struct. 25, 055005 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    S. Zhou, J. Cao, G. Litak, J. Lin. TM-Tech. Mess. 85, 521 (2018)CrossRefGoogle Scholar
  14. 14.
    D. Zhu, M.J. Tudor, S.P. Beeby, Meas. Sci. Technol. 21, 022001 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    H. Li, W. Qin, W. Deng, R. Tian, Eur. Phys. J. Plus 131, 60 (2016)CrossRefGoogle Scholar
  16. 16.
    L. Chen, W. Jiang, J. Appl. Mech. 82, 031004 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Fang, Y. Zhang, X. Li, H. Ding, L. Chen, J. Vib. Acoust. 140, 021009 (2018)CrossRefGoogle Scholar
  18. 18.
    Z. Fang, Y. Zhang, X. Li, H. Ding, L. Chen, J. Sound. Vib. 391, 35 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    S. Zhou, J. Cao, D.J. Inman, S. Liu, W. Wang, J. Lin, Appl. Phys. Lett. 106, 093901 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    M.F. Daqaq, J. Sound. Vib. 329, 3621 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    S.C. Stanton, C.C. Mcgehee, B.P. Mann, Appl. Phys. Lett. 95, 421 (2009)CrossRefGoogle Scholar
  22. 22.
    P. Firoozy, S.E. Khadem, S.M. Pourkiaee, Int. J. Eng. Sci. 111, 113 (2017)CrossRefGoogle Scholar
  23. 23.
    G. Litak, M.I. Friswell, S. Adhikari, Appl. Phys. Lett. 96, 214103 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    W. Liu, A. Bade, F. Formosa, Y.P. Wu, A. Agbossou, Smart Mater. Struct. 22, 035013 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    J. Cao, A. Syta, G. Litak, S. Zhou, D.J. Inman, Y. Chen, Eur. Phys. J. Plus 130, 103 (2015)CrossRefGoogle Scholar
  26. 26.
    P. Harris, C.R. Bowen, H.A. Kim, G. Litak, Eur. Phys. J. Plus 131, 109 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Chiacchiari, F. Romeo, D.M. McFarland, L.A. Bergman, A.F. Vakakis, Int. J. Nonlinear Mech. 94, 84 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    S. Zhou, J. Cao, D.J. Inman, J. Lin, S. Liu, Z. Wang, Appl. Energy 133, 33 (2014)CrossRefGoogle Scholar
  29. 29.
    G.T.O. Tékam, C.A.K. Kwuimy, P. Woafo, Chaos 25, 013112 (2015)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    P. Zhu, X. Ren, W. Qin, Z. Zhou, Arch. Appl. Mech. 87, 45 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    S. Zhou, L. Zuo, Commun. Nonlinear Sci. 61, 271 (2018)CrossRefGoogle Scholar
  32. 32.
    D. Zhu, M.J. Tudor, S.P. Beeby, Meas. Sci. Technol. 21, 022001 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    P. Kim, Y.J. Yoon, J. Seok, Nonlinear Dyn. 83, 1823 (2016)CrossRefGoogle Scholar
  34. 34.
    P. Alevras, S. Theodossiades, H. Rahnejat, Appl. Phys. Lett. 110, 233901 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Cheng, N. Wu, Q. Wang, J. Sound. Vib. 396, 69 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    M. Lallart, S.R. Anton, D.J. Inman, J. Intell. Mater. Syst. Struct. 21, 897 (2010)CrossRefGoogle Scholar
  37. 37.
    L. Gu, C. Livermore, Appl. Phys. Lett. 97, 081904 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    N.A. Aboulfotoh, M.H. Arafa, S.M. Megahed, Sensors Actuators A - Phys. 201, 328 (2013)CrossRefGoogle Scholar
  39. 39.
    H. Xue, Y. Hu, Q.M. Wang, IEEE. Trans. Ultrason., Ferroelectr., Freq. Control 55, 2097 (2008)CrossRefGoogle Scholar
  40. 40.
    P.J. Cornwell, J. Goethal, J. Kowko, M. Damianakis, J. Intell. Mater. Syst. Struct. 16, 825 (2005)CrossRefGoogle Scholar
  41. 41.
    Y. Yang, D. Upadrashta, Nonlinear Dyn. 84, 2487 (2016)CrossRefGoogle Scholar
  42. 42.
    C. Maruccio, G. Quaranta, P. Montegiglio, F. Trentadue, G. Acciani, Shock Vib. 2018, 2054873 (2018)Google Scholar
  43. 43.
    E.I. Rivin, Stiffness and Damping in Mechanical Design (Marcel Dekker Inc, New York, 1999)Google Scholar
  44. 44.
    X.J. Yang, H.M. Srivastava, Commun. Nonlinear Sci. 29, 499 (2015)CrossRefGoogle Scholar
  45. 45.
    R.E. Mickens, Truly Nonlinear Oscillations: Harmonic Balance, Parameter Expansions, Iteration, and Averaging Methods (World Scientific, Singapore, 2010)Google Scholar
  46. 46.
    Z. Rakaric, I. Kovacic, Commun. Nonlinear Sci. 18, 1888 (2013)CrossRefGoogle Scholar
  47. 47.
    I. Kovacic, Int. J. Nonlinear Mech. 65, 44 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    I. Kovacic, Chaos, Solitons Fractals 44, 891 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    G. Litak, M. Borowiec, A. Syta, Z. Angew. Math. Mech. 87, 590 (2007)CrossRefGoogle Scholar
  50. 50.
    P. Alabuzhev, A. Gritchin, L. Kim, G. Migirenko, V. Chon, P. Stepanov, Vibration Protecting and Measuring Systems with Quasi-Zero Stiffness (Taylor & Francis, New York, 1989)Google Scholar
  51. 51.
    C.A.K. Kwuimy, G. Litak, C. Nataraj, Nonlinear Dyn. 80, 491 (2015)CrossRefGoogle Scholar
  52. 52.
    D. Huang, W. Xu, W. Xie, Y. Liu, Nonlinear Dyn. 81, 641 (2015)CrossRefGoogle Scholar
  53. 53.
    S.C. Stanton, A. Erturk, B.P. Mann, D.J. Inman, J. Appl. Phys. 108, 074903 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    F. Verhulst, Nonlinear Differential Equations and Dynamical Systems (Springer, Berlin, 2006)Google Scholar
  55. 55.
    S. Zhou, J. Cao, D.J. Inman, J. Lin, D. Li, J. Sound Vib. 373, 223 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley, Chichester, 2008)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsXidian UniversityXi’an, ShaanxiChina
  2. 2.School of AeronauticsNorthwestern Polytechnical UniversityXi’anChina
  3. 3.Department of AutomationLublin University of TechnologyLublinPoland
  4. 4.Department of Process ControlAGH University of Science and TechnologyKrakowPoland

Personalised recommendations