Deviation analysis for texture segmentation of breast lesions in mammographic images

  • Bushra Mughal
  • Nazeer MuhammadEmail author
  • Muhammad Sharif
Regular Article


The performance of segmentation methods of breast lesions is often achieved as a vigorous initiative in the automated diagnosis system using color features and mathematical morphology. However, the existing segmentation methods cannot segment the breast mass with high accuracy, particularly the mammogram images that contain the diverse textures. We propose a novel breast mass segmentation technique based on the combination of color space and intensity variation analysis. We have analyzed the properties of color space defined by the International Commission on Illumination with the focus on the visual perception of the color components. Pixel features are obtained by using a color-size histogram for textural deviation analysis as the dominant property of the mathematical morphology, which has been performed for accurate segmentation of the tumor region. This approach is tested on 513 mammograms provided by digital database for screening mammography (DDSM) and the Mammographic Image Analysis Society (MIAS). In order to assess the performance of the proposed method, both the subjective as well as objective based approaches are used. The proposed method shows the prodigious performance in the mammogram segmentation process and achieved an accuracy rate of 98.00% on MIAS and 97.00% on DDSM images.


  1. 1.
    M. Pobiruchin, S. Bochum, U.M. Martens, M. Kieser, W. Schramm, J. Biomed. Inform. 60, 385 (2016)CrossRefGoogle Scholar
  2. 2.
    V. Vishrutha, M. Ravishankar, Early detection and classification of breast cancer, in Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014 (Springer, 2015) pp. 413--419Google Scholar
  3. 3.
    L.E. Pace, J.-M.V. Dusengimana, V. Hategekimana, H. Habineza, J.B. Bigirimana, N. Tapela, C. Mutumbira, E. Mpanumusingo, J.E. Brock, E. Meserve, Oncologist 21, 571 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Dheeba, S.T. Selvi, Classification of malignant and benign microcalcification using SVM classifier, in 2011 International Conference on Emerging Trends in Electrical and Computer Technology (ICETECT) (IEEE, 2011) pp. 686--690Google Scholar
  5. 5.
    Q. Abbas, M.E. Celebi, I.F. García, Biomed. Signal Process. Control 8, 204 (2013)CrossRefGoogle Scholar
  6. 6.
    J. O’connor, P. Tofts, K. Miles, L. Parkes, G. Thompson, A. Jackson, Br. J. Radiol. 84, S112 (2014)CrossRefGoogle Scholar
  7. 7.
    N. Dhungel, G. Carneiro, A.P. Bradley, Tree RE-weighted belief propagation using deep learning potentials for mass segmentation from mammograms, in 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI) (IEEE, 2015) pp. 760--763Google Scholar
  8. 8.
    V. Bhateja, M. Misra, S. Urooj, Comput. Methods Programs Biomed. 129, 125 (2016)CrossRefGoogle Scholar
  9. 9.
    W. Dähnert, Gastrointestinal disorders, in Radiology Review Manual, 7th ed. (Lippincott Williams & Wilkins, Philadelphia, 2011) pp. 836Google Scholar
  10. 10.
    R. Rouhi, M. Jafari, S. Kasaei, P. Keshavarzian, Expert Syst. Appl. 42, 990 (2015)CrossRefGoogle Scholar
  11. 11.
    L. Song, Y. Lv, B. Yang, Y. Wang, Segmentation of breast masses using adaptive region growing, in 2013 8th International Forum on Strategic Technology (IFOST) (IEEE, 2013) pp. 77--81Google Scholar
  12. 12.
    M. Elangeeran, S. Ramasamy, K. Arumugam, A novel method for benign and malignant characterization of mammographic microcalcifications employing waveatom features and circular complex valued---Extreme Learning Machine, in 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) (IEEE, 2014) pp. 1--6Google Scholar
  13. 13.
    M.S. Chaibou, K. Kalti, B. Solaiman, M.A. Mahjoub, A Combined Approach Based on Fuzzy Classification and Contextual Region Growing to Image Segmentation, in 2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV) (IEEE, 2016) pp. 172--177Google Scholar
  14. 14.
    N. Muhammad, N. Bibi, IET Image Process. 9, 795 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Farwa, T. Shah, N. Muhammad, N. Bibi, A. Jahangir, S. Arshad, Int. J. Adv. Comput. Sci. Appl. 8, 360 (2017)Google Scholar
  16. 16.
    N. Muhammad, N. Bibi, Z. Mahmood, D.-G. Kim, SpringerPlus 4, 832 (2015)CrossRefGoogle Scholar
  17. 17.
    N. Ahmed, D. Linardi, N. Muhammad, C. Chiamulera, G. Fumagalli, L.S. Biagio, Front. Pharmacol. 8, 645 (2017)CrossRefGoogle Scholar
  18. 18.
    N. Muhammad, N. Bibi, A. Jahangir, Z. Mahmood, Pattern Anal. Appl., (2017)
  19. 19.
    Z. Mahmood, T. Ali, N. Muhammad, N. Bibi, I. Shahzad, S. Azmat, KSII Trans. Internet Inf. Syst. 11, 6069 (2017)Google Scholar
  20. 20.
    N. Muhammad, N. Bibi, Z. Mahmood, T. Akram, S.R. Naqvi, PLoS ONE 12, e0176979 (2017)CrossRefGoogle Scholar
  21. 21.
    B. Mughal, N. Muhammad, M. Sharif, T. Saba, A. Rehman, Extraction of breast border and removal of pectoral muscle in wavelet domain, in Biomedical Research, Vol. 28 (2017)Google Scholar
  22. 22.
    Z. Mahmood, N. Muhammad, N. Bibi, T. Ali, Fractals 25, 1750025 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    B. Mughal, M. Sharif, N. Muhammad, Eur. Phys. J. Plus 132, 266 (2017)CrossRefGoogle Scholar
  24. 24.
    N. Muhammad, N. Bibi, I. Qasim, A. Jahangir, Z. Mahmood, Pattern Anal. Appl. (2017)
  25. 25.
    M. Usman, K. Saba, D.-P. Han, N. Muhammad, Superlattices Microstruct. 113, 585 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    M. Irshad, N. Muhammad, M. Sharif, M. Yasmeen, Eur. Phys. J. Plus 133, 148 (2018)CrossRefGoogle Scholar
  27. 27.
    M.A. Khan, T. Akram, M. Sharif, M.Y. Javed, N. Muhammad, M. Yasmin, Pattern Anal. Appl. (2018)
  28. 28.
    B. Mughal, M. Sharif, N. Muhammad, T. Saba, Microsc. Res. Tech. 81, 171 (2018)CrossRefGoogle Scholar
  29. 29.
    N. Muhammad, M. Sharif, J. Amin, R. Mehboob, N. Bibi, N. Ahmed, Front. Pediatr. 6, 6 (2018)CrossRefGoogle Scholar
  30. 30.
    S.R. Naqvi, T. Akram, S. Iqbal, S.A. Haider, M. Kamran, N. Muhammad, Appl. Nanosci. 8, 89 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    N. Muhammad, N. Bibi, A. Wahab, Z. Mahmood, T. Akram, S.R. Naqvi, Comput. Electr. Eng. 70, 413 (2018)CrossRefGoogle Scholar
  32. 32.
    M. Firmino, G. Angelo, H. Morais, M.R. Dantas, R. Valentim, Biomed. Eng. Online 15, 1 (2016)CrossRefGoogle Scholar
  33. 33.
    L.A. Torre, F. Bray, R.L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal, CA: Cancer J. Clin. 65, 87 (2015)Google Scholar
  34. 34.
    A.R. Domínguez, A.K. Nandi, Med. Phys. 34, 4256 (2007)CrossRefGoogle Scholar
  35. 35.
    E. Song, L. Jiang, R. Jin, L. Zhang, Y. Yuan, Q. Li, Acad. Radiol. 16, 826 (2009)CrossRefGoogle Scholar
  36. 36.
    C.H. Chen, G.G. Lee, Graph. Models Image Process. 59, 349 (1997)CrossRefGoogle Scholar
  37. 37.
    J. Anitha, J.D. Peter, A spatial fuzzy based level set method for mammogram mass segmentation, in 2015 2nd International Conference on Electronics and Communication Systems (ICECS) (IEEE, 2015) pp. 1--6Google Scholar
  38. 38.
    D. Cascio, F. Fauci, R. Magro, G. Raso, R. Bellotti, F. De Carlo, S. Tangaro, G. De Nunzio, M. Quarta, G. Forni, IEEE Trans. Nucl. Sci. 53, 2827 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    J. Dengler, S. Behrens, J.F. Desaga, IEEE Trans. Med. Imaging 12, 634 (1993)CrossRefGoogle Scholar
  40. 40.
    J. Anitha, J.D. Peter, S.I.A. Pandian, Comput. Methods Programs Biomed. 138, 93 (2017)CrossRefGoogle Scholar
  41. 41.
    M. Heath, K. Bowyer, D. Kopans, R. Moore, W.P. Kegelmeyer, The digital database for screening mammography, Proceedings of the 5th international workshop on digital mammography (Medical Physics Publishing, 2000) pp. 212--218Google Scholar
  42. 42.
    M. Heath, K. Bowyer, D. Kopans, P. Kegelmeyer Jr, R. Moore, K. Chang, S. Munishkumaran, Current status of the digital database for screening mammography, in Digital Mammography (Springer, 1998) pp. 457--460Google Scholar
  43. 43.
    B.I. Reporting, Data system, in Breast Imaging Atlas, 4th ed. (American College of Radiology, Reston, 2003)Google Scholar
  44. 44.
    J. Shi, J. Malik, IEEE Trans. Pattern Anal. Mach. Intell. 22, 888 (2000)CrossRefGoogle Scholar
  45. 45.
    K. Vaidehi, T. Subashini, Proc. Comput. Sci. 46, 1762 (2015)CrossRefGoogle Scholar
  46. 46.
    A. Melouah, R. Amirouche, Comparative study of automatic seed selection methods for medical image segmentation by region growing technique, in Recent Advances in Biology, Biomedicine and Bioengineering (WSEAS Press, 2014) pp. 91--97,
  47. 47.
    S.D. Tzikopoulos, M.E. Mavroforakis, H.V. Georgiou, N. Dimitropoulos, S. Theodoridis, Comput. Methods Programs Biomed. 102, 47 (2011)CrossRefGoogle Scholar
  48. 48.
    M. Hanmandlu, A.A. Khan, A. Saha, A novel algorithm for pectoral muscle removal and auto-cropping of neoplasmic area from mammograms, in 2012 IEEE International Conference on Computational Intelligence & Computing Research (ICCIC) (IEEE, 2012) pp. 1--5Google Scholar
  49. 49.
    D.C. Pereira, R.P. Ramos, M.Z. Do Nascimento, Comput. Methods Programs Biomed. 114, 88 (2014)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bushra Mughal
    • 1
  • Nazeer Muhammad
    • 2
    Email author
  • Muhammad Sharif
    • 1
  1. 1.Department of Computer ScienceCOMSATS University IslamabadWah CampusPakistan
  2. 2.Department of MathematicsCOMSATS University IslamabadWah CampusPakistan

Personalised recommendations