Advertisement

A simple method to generate exact physically acceptable anisotropic solutions in general relativity

  • J. OvalleEmail author
  • A. Sotomayor
Regular Article

Abstract.

By using the gravitational decoupling through the minimal geometric deformation approach (MGD-decoupling), we show a simple and powerful approach to generate physically acceptable exact analytical solutions for anisotropic stellar distributions in general relativity. We find that some perfect fluid configurations could be incompatible with anisotropic effects produced by scalar fields.

References

  1. 1.
    J. Ovalle, Phys. Rev. D 95, 104019 (2017) arXiv:1704.05899v1 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Ovalle, Mod. Phys. Lett. A 23, 3247 (2008) arXiv:gr-qc/0703095v3ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    J. Ovalle, Braneworld stars: anisotropy minimally projected onto the brane, in Gravitation and Astrophysics (ICGA9), edited by J. Luo (World Scientific, Singapore, 2010) pp. 173--182 arXiv:0909.0531v2 [gr-qc]Google Scholar
  4. 4.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) arXiv:hep-ph/9905221v1ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999) arXiv:hep-th/9906064v1ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Roberto Casadio, Jorge Ovalle, Roldao da Rocha, Class. Quantum Grav. 32, 215020 (2015) arXiv:1503.02873v2 [gr-qc]ADSCrossRefGoogle Scholar
  7. 7.
    J. Ovalle, Int. J. Mod. Phys. Conf. Ser. 41, 1660132 (2016) arXiv:1510.00855v2 [gr-qc]CrossRefGoogle Scholar
  8. 8.
    J. Ovalle, Int. J. Mod. Phys. D 18, 837 (2009) arXiv:0809.3547 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    J. Ovalle, Mod. Phys. Lett. A 25, 3323 (2010) arXiv:1009.3674 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Casadio, J. Ovalle, Phys. Lett. B 715, 251 (2012) arXiv:1201.6145 [gr-qc]ADSCrossRefGoogle Scholar
  11. 11.
    J. Ovalle, F. Linares, Phys. Rev. D 88, 104026 (2013) arXiv:1311.1844v1 [gr-qc]ADSCrossRefGoogle Scholar
  12. 12.
    J. Ovalle, F. Linares, A. Pasqua, A. Sotomayor, Class. Quantum Grav. 30, 175019 (2013) arXiv:1304.5995v2 [gr-qc]ADSCrossRefGoogle Scholar
  13. 13.
    R. Casadio, J. Ovalle, R. da Rocha, Class. Quantum Grav. 30, 175019 (2014) arXiv:1310.5853 [gr-qc]Google Scholar
  14. 14.
    J. Ovalle, L.A. Gergely, R. Casadio, Class. Quantum Grav. 32, 045015 (2015) arXiv:1405.0252v2 [gr-qc]ADSCrossRefGoogle Scholar
  15. 15.
    R. Casadio, J. Ovalle, R. da Rocha, EPL 110, 40003 (2015) arXiv:1503.02316 [gr-qc]ADSCrossRefGoogle Scholar
  16. 16.
    R.T. Cavalcanti, A. Goncalves da Silva, Roldao da Rocha, Class. Quantum Grav. 33, 215007 (2016) arXiv:1605.01271v2 [gr-qc]ADSCrossRefGoogle Scholar
  17. 17.
    Roberto Casadio, Roldao da Rocha, Phys. Lett. B 763, 434 (2016) arXiv:1610.01572 [hep-th]ADSCrossRefGoogle Scholar
  18. 18.
    J. Ovalle, R. Casadio, A. Sotomayor, Adv. High Energy Phys. 2017, 9756914 (2017) arXiv:1612.07926 [gr-qc]CrossRefGoogle Scholar
  19. 19.
    R. da Rocha, Phys. Rev. D 95, 124017 (2017) arXiv:1701.00761v2 [hep-ph]ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    R. da Rocha, Eur. Phys. J. C 77, 355 (2017) arXiv:1703.01528 [hep-th]ADSCrossRefGoogle Scholar
  21. 21.
    A. Fernandes-Silva, R. da Rocha, Eur. Phys. J. C 78, 271 (2018) arXiv:1708.08686 [hep-th]CrossRefGoogle Scholar
  22. 22.
    Roberto Casadio, Piero Nicolini, Roldao da Rocha, arXiv:1709.09704 [hep-th]Google Scholar
  23. 23.
    J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Eur. Phys. J. C 78, 122 (2018) arXiv:1708.00407 [gr-qc]ADSCrossRefGoogle Scholar
  24. 24.
    C. Las Heras, P. Leon, Fortschr. Phys. 66, 1800036 (2018) arXiv:1804.06874v3 [gr-qc]MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Fernandes-Silva, A.J. Ferreira-Martins, R. Da Rocha, arXiv:1803.03336 [hep-th]Google Scholar
  26. 26.
    Milko Estrada, Francisco Tello-Ortiz, arXiv:1803.02344 [gr-qc]Google Scholar
  27. 27.
    Ernesto Contreras, Pedro Bargueo, Eur. Phys. J. C 78, 558 (2018) arXiv:1805.10565v2 [gr-qc]CrossRefGoogle Scholar
  28. 28.
    E. Morales, Francisco Tello-Ortiz, arXiv:1805.00592 [gr-qc]Google Scholar
  29. 29.
    Luciano Gabbanelli, Angel Rincn, Carlos Rubio, Eur. Phys. J. C 78, 370 (2018) arXiv:1802.08000 [gr-qc]ADSCrossRefGoogle Scholar
  30. 30.
    M. Sharif, Sobia Sadiq, Eur. Phys. J. Plus 133, 245 (2018)CrossRefGoogle Scholar
  31. 31.
    M. Sharif, Sobia Sadiq, Eur. Phys. J. C 78, 410 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    S.K. Maurya, M. Govender, Eur. Phys. J. C 77, 420 (2017) arXiv:1705.04292v2 [gr-qc]ADSCrossRefGoogle Scholar
  33. 33.
    V. Dzhunushaliev, V. Folomeev, R. Myrzakulov, Douglas Singleton, JHEP 07, 094 (2008) arXiv:0805.3211v3 [gr-qc]ADSCrossRefGoogle Scholar
  34. 34.
    S. Chakraborty, S. SenGupta, Eur. Phys. J. C 76, 552 (2016) arXiv:1604.05301v2 [gr-qc]ADSCrossRefGoogle Scholar
  35. 35.
    K. Kokkotas, R.A. Konoplya, A. Zhidenko, arXiv:1705.09875v3 [gr-qc]Google Scholar
  36. 36.
    L.G. Jaime, L. Patino, M. Salgado, Phys. Rev. D 83, 024039 (2011) arXiv:1006.5747v3 [gr-qc]ADSCrossRefGoogle Scholar
  37. 37.
    L. Alvarez-Gaume, A. Kehagias, C. Kounnas, D. Lust, A. Riotto, Fortsch. Phys. 64, 176 (2016) arXiv:1505.07657v2 [hep-th]ADSCrossRefGoogle Scholar
  38. 38.
    D. Vernieri, S. Carloni, EPL 121, 30002 (2018) arXiv:1706.06608v2 [gr-qc]ADSCrossRefGoogle Scholar
  39. 39.
    C. Eling, T. Jacobson, Class. Quantum Grav. 23, 5625 (2006) 27ADSCrossRefGoogle Scholar
  40. 40.
    Zdenek Stuchlik, Stanislav Hledik, Jan Novotny, Phys. Rev. D 94, 103513 (2016) arXiv:1611.05327 [gr-qc]ADSCrossRefGoogle Scholar
  41. 41.
    Jan Novotny, Jan Hladik, Zdenek Stuchlik, Phys. Rev. D 95, 043009 (2017) arXiv:1703.04604 [gr-qc]ADSCrossRefGoogle Scholar
  42. 42.
    Zdenek Stuchlik, Jan Schee, Bobir Toshmatov, Jan Hladik, Jan Novotny, JCAP 06, 056 (2017) arXiv:1704.07713v2 [gr-qc]CrossRefGoogle Scholar
  43. 43.
    M. Ilyas, Z. Yousaf, M.Z. Bhatti, Bilal Masud, Astrophys. Space Sci. 362, 237 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    Sante Carloni, Daniele Vernieri, Phys. Rev. D 97, 124057 (2018) arXiv:1709.03996 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Hans Stephani, Dietrich Kramer, Malcolm Maccallum, Cornelius Hoenselaers, Eduard Herlt, Exact Solutions of Einstein’s Field Equations (Cambridge University Press, Cambridge, 2003)Google Scholar
  46. 46.
    K. Lake, Phys. Rev. Lett. 92, 051101 (2004) arXiv:gr-qc/0302067v5ADSCrossRefGoogle Scholar
  47. 47.
    L. Herrera, J. Ospino, A. Di Prisco, Phys. Rev. D 77, 027502 (2008) arXiv:0712.0713v3ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Z. Stuchlik, arXiv:1804.03468v2 [gr-qc]Google Scholar
  49. 49.
    M.C.B. Abdalla, J.M. Hoff da Silva, R. da Rocha, Phys. Rev. D 80, 046003 (2009)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    R. da Rocha, J.M. Hoff da Silva, Phys. Rev. D 85, 046009 (2012) arXiv:1202.1256 [gr-qc]ADSCrossRefGoogle Scholar
  51. 51.
    L.A. Gergely, Eötvös branes, Phys. Rev. D 79, 086007 (2009) arXiv:0806.4006 [gr-qc]ADSCrossRefGoogle Scholar
  52. 52.
    M.S.R. Delgaty, K. Lake, Comput. Phys. Commun. 115, 395 (1998) arXiv:gr-qc/9809013ADSCrossRefGoogle Scholar
  53. 53.
    K. Lake, Phys. Rev. D 67, 104015 (2003) arXiv:gr-qc/0209104v4ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Petarpa Boonserm, Matt Visser, Silke Weinfurtner, Phys. Rev. D 71, 124037 (2005) arXiv:gr-qc/0503007ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    R.C. Tolman, Phys. Rev. 55, 364 (1939)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and ScienceSilesian University in OpavaOpavaCzech Republic
  2. 2.Departamento de FısicaUniversidad Simón BolívarCaracasVenezuela
  3. 3.Departamento de MatemáticasUniversidad de AntofagastaAntofagastaChile

Personalised recommendations