Advertisement

Study of the associated production of the Higgs boson with a top quark pair in a boosted regime in the ATLAS experiment

  • Silvia Biondi
Regular Article
  • 3 Downloads

Abstract.

The measurements of the \(pp\rightarrow t\bar{t} H\) signal strength (\(\mu = \sigma_{obs}/\sigma_{t\bar{t} H_{SM}}\)) and its upper limit at a center-of-mass energy of pp collision of 13TeV are presented in this paper. The pp data collected with the ATLAS detector in 2015 and 2016, corresponding to an integrated luminosity of 36.5 fb-1, have been subjected to a detailed analysis. The \( t\bar{t} H\) signal strength and its upper limit have been measured searching for the decays \(H\rightarrow b \bar{b}\) and \( t\bar{t} \rightarrow l \nu b q \bar{q}' \bar{b}\). Two different analysis approaches have been used in order to analyse the same data in two different ways. In the first (namely “resolved”), the procedure uses standard identification and reconstruction algorithms, meaning that the individual partons from the initial hard process are reconstructed as separate objects. In the second (namely “combined”), the events are separated in two exclusive regimes, including events containing the hadronically decaying top quark (\(t \rightarrow q q' b\)) with a low transverse momentum (\(p_{\rm T} < 250\) GeV) and the boosted ones with the opposite requirement, where the partially overlapped jets coming from high pT tops are suitably identified, reconstructed and tagged. The boosted sample is sensitive to a significantly different kinematic region and provides additional information. The measured signal strength is \( 1.4 \pm 0.5\) and \( 1.2 \pm 0.5\), respectively, for the resolved and the combined analysis. A signal strength larger than 2.3 and 2.0 can be excluded at the 95% confidence level respectively for the resolved and the combined analysis. Both results are compatible with the prediction of the Standard Model (\(\mu = 1\)). Previous results in the search for the \(t\bar{t} H\) process were reported by the ATLAS Collaboration and a boosted reconstruction in the channel was previously done by the CMS Collaboration.

References

  1. 1.
  2. 2.
    ATLAS Collaboration, Phys. Lett. B 716, 1 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    CMS Collaboration, Phys. Lett. B 716, 30 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016) and 2017 updateADSCrossRefGoogle Scholar
  5. 5.
    ATLAS Collaboration, Eur. Phys. J. C 75, 349 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    ATLAS Collaboration, Performance of top-quark and W-boson tagging with ATLAS in Run 2 of the LHC, arXiv:1808.07858v1Google Scholar
  7. 7.
  8. 8.
    ATLAS Collaboration, JINST 3, S08003 (2008)Google Scholar
  9. 9.
    S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    W. Lukas, J. Phys.: Conf. Ser. 396, 022031 (2012)Google Scholar
  11. 11.
    S. Frixione, F. Stoeckli, P.Torrielli, B.R. Webber, C.D. White, The MC@NLO 4.0 Event Generator, arXiv:1010.0819 [hep-ph] (2010)Google Scholar
  12. 12.
    T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1, arXiv:0710.3820v1 [hep-ph] (2008)Google Scholar
  13. 13.
    R.D. Ball, V. Bertone, S. Carrazza, C.S. Deans, L. Del Debbio, S. Forte, A. Guffanti, N.P. Hartland, J.I. Latorre, J. Rojo, M. Ubiali, JHEP 04, 040 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    S. Alioli et al., JHEP 06, 043 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    S. Frixione, P. Nason, C. Oleari, JHEP 11, 070 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    D.J. Lange, Nucl. Instrum. Methods A 462, 152 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    T. Gleisberg et al., JHEP 02, 007 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    H.-L. Lai et al., Phys. Rev. D 82, 074024 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    J. Alwall et al., JHEP 06, 128 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    D0 Collaboration, Phys. Rev. D 76, 092007 (2007)CrossRefGoogle Scholar
  21. 21.
    ALTAS Collaboration, Estimation of non-prompt and fake lepton backgrounds in final states with top quarks produced in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, ATLAS-CONF-2014-058Google Scholar
  22. 22.
    ATLAS Collaboration, Search for the Standard Model Higgs boson produced in association with top quarks and decaying into $b\bar{b}$ in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, ATLAS-CONF-2016-080Google Scholar
  23. 23.
    ATLAS Collaboration, Eur. Phys. J. 76, 6 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    T. Gleisberg et al., JHEP 02, 007 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    F. Cascioli, P. Maierhofer, S. Pozzorini, Phys. Rev. Lett. 108, 111601 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    J. Adelman, Search for the Standard Model Higgs boson produced in association with top quarks in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector at the LHC, ATL-COM-PHYS-2014-1471 (2014)Google Scholar
  27. 27.
    F. Cascioli et al., Phys. Lett. B 734, 210 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    M. Bähr et al., Eur. Phys. J. 58, 639 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    S. Biondi, Study of the associated production of the Higgs boson with a top quark pair in a boosted regime in the ATLAS experiment at LHC, CERN-THESIS-2017-155Google Scholar
  30. 30.
    ATLAS Collaboration, Eur. Phys. J. 75, 17 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    M. Cacciari, G.P. Salam, G. Soyez, JHEP 04, 63 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    ATLAS Collaboration, Performance of pile-up mitigation techniques for jets in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector, CERN-PH-EP-2015-206Google Scholar
  33. 33.
    ATLAS Collaboration, Optimisation of the ATLAS b-tagging performance for th 2016 LHC Run, ATL-PHYS-PUB-2016-012Google Scholar
  34. 34.
    ATLAS Collaboration, Expected performance of the ATLAS b-tagging algorithms in Run-2, ATL-PHYS-PUB2015-022Google Scholar
  35. 35.
    D. Krohn, J. Thaler, L.-T. Wang, JHEP 02, 084 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    ATLAS Collaboration, Boosted hadronic top identification at ATLAS for early 13TeV data, ATL-PHYS-PUB-2015-053Google Scholar
  37. 37.
    ATLAS Collaboration, Public plots: Large-radius jet performance plots using full 13TeV 2015 dataset, https://doi.org/atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2015-004/
  38. 38.
    Andrew J. Larkoski, Ian Moult, Duff Neill, JHEP 12, 009 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    Andrew J. Larkoski, Duff Neill, Jesse Thaler, JHEP 04, 017 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    J. Thaler, L.-T. Wang, JHEP 07, 092 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    M. Wolter, Phys. Part. Nucl. 38, 255 (2007)CrossRefGoogle Scholar
  42. 42.
    A. Hoeker, TMVA - Toolkit for Multivariate Data Analysis, CERN-OPEN-2007-007Google Scholar
  43. 43.
    G. Cowan, K. Cranmer, E. Gross, O. Vitells, Eur. Phys. J. C 71, 1554 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    T. Junk, Nucl. Instrum. Methods A 434, 435 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    A.L. Read, J. Phys. G 28, 2693 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    ATLAS Collaration, Eur. Phys. J. 73, 2518 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    ATLAS Collaboration, Luminosity determination in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector at the LHC, CERN-EP-2016-117Google Scholar
  48. 48.
    ATLAS Collaboration, Jet Calibration and Systematic Uncertainties for Jets Reconstructed in the ATLAS Detector at $\sqrt{s} = 13$ TeV, ATL-PHYS-PUB-2015-015 (2015)Google Scholar
  49. 49.
    N. Kidonakis, Phys. Rev. D 82, 054018 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    N. Kidonakis, Phys. Rev. D 81, 054028 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    N. Kidonakis, Phys. Rev. D 83, 091503 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    ATLAS Collaboration, Multi-Boson Simulation for 13TeV ATLAS Analyses, ATL-PHYS-PUB-2016-002 (2016)Google Scholar
  53. 53.
    J.M. Campbell, R.K. Ellis, JHEP 07, 052 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    W. Beenakker et al., Nucl. Phys. B 653, 151 (2003)ADSCrossRefGoogle Scholar
  55. 55.
    S. Dawson et al., Phys. Rev. D 68, 034022 (2003)ADSCrossRefGoogle Scholar
  56. 56.
    Y. Zhang et al., Phys. Lett. B 738, 1 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    S. Frixione et al., JHEP 06, 184 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108, 56 (1998)ADSCrossRefGoogle Scholar
  59. 59.
    M. Czakon, A. Mitov, Comput. Phys. Commun. 185, 2930 (2014)ADSCrossRefGoogle Scholar
  60. 60.
    M. Czakon, D. Heymes, A. Mitov, Phys. Rev. Lett. 116, 082003 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    A.D. Martin et al., Eur. Phys. J. 63, 189 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    F. Demartin, F. Maltoni, K. Mawatari, B. Page, M. Zaro, Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction, arXiv:1407.5089Google Scholar
  63. 63.
    F. Maltoni, E. Vryonidou, C. Zhang, JHEP 10, 123 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Bologna and INFNBolognaItaly

Personalised recommendations