Advertisement

On invariant analysis and conservation laws of the time fractional variant Boussinesq and coupled Boussinesq-Burger’s equations

  • M. S. HashemiEmail author
  • Z. Balmeh
Regular Article
  • 49 Downloads

Abstract.

In this paper, two time fractional coupled systems of differential equations have been investigated by using the Lie symmetry analysis. Vector field generators of these variants of Boussinesq equations are extracted and corresponding reductions to the systems of fractional ordinary differential equations (FODEs) with Erdélyi-Kober fractional derivatives are obtained. Conservation laws of these fractional systems are extracted. Finally, the invariant subspace method is applied to find the corresponding exact solutions.

References

  1. 1.
    R.L. Sachs, Physica D 30, 1 (1988)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    H. Gao, T. Xu, S. Yang, G. Wang, Nonlinear Dyn. 88, 1139 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Kumar, A. Kumar, D. Baleanu, Nonlinear Dyn. 85, 699 (2016)CrossRefGoogle Scholar
  4. 4.
    K. Diethelm, The Analysis of Fractional Differential Equations, An Application-Oriented Exposition Using Differential Operators of Caputo Type (Springer-Verlag, Berlin-Heidelberg, Germany, 2010)Google Scholar
  5. 5.
    A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations (North-Holland, New York, 2006)Google Scholar
  6. 6.
    D. Baleanu, K. Diethelm, E. Scalas, J. Trujillo, Fractional Calculus Models and Numerical Methods (Series on Complexity, Nonlinearity and Chaos) (World Scientific, 2012)Google Scholar
  7. 7.
    R. Gazizov, A. Kasatkin, S. Lukashchuk, Phys. Scr. 2009, 014016 (2009)CrossRefGoogle Scholar
  8. 8.
    M.S. Hashemi, F. Bahrami, R. Najafi, Optik 138, 240 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    M.S. Hashemi, Physica A 417, 141 (2015)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    M.S. Hashemi, D. Baleanu, J. Optoelectron. Adv. Mater. 18, 383 (2016)Google Scholar
  11. 11.
    M.S. Hashemi, D. Baleanu, Commun. Theor. Phys. 65, 11 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    J. Hu, Y. Ye, S. Shen, J. Zhang, Appl. Math. Comput. 233, 439 (2014)MathSciNetGoogle Scholar
  13. 13.
    Q. Huang, R. Zhdanov, Physica A 409, 110 (2014)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Liu, Stud. Appl. Math. 131, 317 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Najafi, F. Bahrami, M.S. Hashemi, Nonlinear Dyn. 87, 1785 (2017)CrossRefGoogle Scholar
  16. 16.
    R. Sahadevan, T. Bakkyaraj, J. Math. Anal. Appl. 393, 341 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    K. Singla, R. Gupta, Nonlinear Dyn. 89, 321 (2017)CrossRefGoogle Scholar
  18. 18.
    G. Wang, X. Liu, Y. Zhang, Commun. Nonlinear Sci. Numer. Simul. 18, 2321 (2013)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    G. Wang, T. Xu, Bound. Value Probl. 2013, 232 (2013)CrossRefGoogle Scholar
  20. 20.
    G. Wang, T. Xu, Nonlinear Dyn. 76, 571 (2014)CrossRefGoogle Scholar
  21. 21.
    G. Wang, T. Xu, T. Feng, PLoS ONE 9, e88336 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    G. Wang, M.S. Hashemi, Pramana 88, 7 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    E. Yaşar, Y. Yildirim, C.M. Khalique, Results Phys. 6, 322 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    S. Pashayi, M.S. Hashemi, S. Shahmorad, Commun. Nonlinear Sci. Numer. Simul. 51, 66 (2017)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    N.H. Ibragimov, J. Math. Anal. Appl. 333, 311 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    M.S. Hashemi, S. Abbasbandy, M.S. Alhuthali, H.H. Alsulami, Rom. J. Phys. 60, 904 (2015)Google Scholar
  27. 27.
    K. Singla, R. Gupta, Commun. Nonlinear Sci. Numer. Simul. 53, 10 (2017)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    M.S. Hashemi, Bull. Iran. Math. Soc. 42, 903 (2016)Google Scholar
  29. 29.
    S.Y. Lukashchuk, Nonlinear Dyn. 80, 791 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    A. Ouhadan, E. El Kinani, Br. J. Math. Comput. Sci. 15 (2016)  https://doi.org/10.9734/BJMCS/2016/25215
  31. 31.
    R. Gazizov, A. Kasatkin, Comput. Math. Appl. 66, 576 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    R. Sahadevan, P. Prakash, Nonlinear Dyn. 85, 659 (2016)CrossRefGoogle Scholar
  33. 33.
    R. Sahadevan, P. Prakash, Commun. Nonlinear Sci. Numer. Simul. 42, 158 (2017)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    R. Sahadevan, T. Bakkyaraj, Fract. Calculus Appl. Anal. 18, 146 (2015)MathSciNetGoogle Scholar
  35. 35.
    V.A. Galaktionov, S.R. Svirshchevskii, Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics (Chapman & Hall/CRC, 2007)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Basic Science FacultyUniversity of BonabBonabIran

Personalised recommendations