A relativistic heat conducting model

  • Gabriel Govender
  • Byron P. Brassel
  • Sunil D. MaharajEmail author
Regular Article


The interior dynamics of a relativistic fluid in a shear-free spherically symmetric spacetime are investigated. The isotropic matter distribution is an imperfect fluid with a nonvanishing heat flux which is in the radial direction. The pressure isotropy condition is a second-order nonlinear ordinary differential equation with variable coefficients in the gravitational potentials. We impose a particular on these potentials and a new class of solutions are obtained, containing those of Bergmann and Modak. A physical analysis is then performed where the matter variables are graphically plotted and the energy conditions are shown to be satisfied. Causality is also shown not to be violated. An analysis of the temperature profiles indicates that closed form expressions can be generated for both the noncausal and causal cases.


  1. 1.
    N.O. Santos, Mon. Not. R. Astron. Soc. 216, 403 (1985)CrossRefGoogle Scholar
  2. 2.
    E.N. Glass, J. Math. Phys. 20, 1508 (1990)CrossRefGoogle Scholar
  3. 3.
    Y. Deng, P.D. Mannheim, Phys. Rev. D 42, 371 (1990)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Y. Deng, P.D. Mannheim, Phys. Rev. D 44, 1722 (1991)MathSciNetCrossRefGoogle Scholar
  5. 5.
    H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, Exact solutions of Einstein’s equations (Cambridge University Press, Cambridge, 2003)Google Scholar
  6. 6.
    B.V. Ivanov, Gen. Relativ. Gravit. 44, 1835 (2012)CrossRefGoogle Scholar
  7. 7.
    S. Wagh, K.S. Govinder, Gen. Relativ. Gravit. 38, 1253 (2006)CrossRefGoogle Scholar
  8. 8.
    L. Herrera, A. Di Prisco, J. Ospino, Phys. Rev. D 74, 044001 (2006)CrossRefGoogle Scholar
  9. 9.
    G.Z. Abebe, S.D. Maharaj, K.S. Govinder, Eur. Phys. J. C 75, 496 (2015)CrossRefGoogle Scholar
  10. 10.
    S.D. Maharaj, G. Govender, M. Govender, Pramana. J. Phys. 77, 469 (2011)CrossRefGoogle Scholar
  11. 11.
    L. Herrera, N.O. Santos, Mon. Not. R. Astron. Soc. 287, 868 (1987)Google Scholar
  12. 12.
    L. Herrera, G. Le Denmat, N.O. Santos, A. Wang, Int. J. Mod. Phys. D 13, 583 (2004)CrossRefGoogle Scholar
  13. 13.
    L. Herrera, G. Le Denmat, N.O. Santos, Phys. Rev. D 79, 087505 (2009)CrossRefGoogle Scholar
  14. 14.
    C. Eckart, Phys. Rev. 58, 919 (1940)CrossRefGoogle Scholar
  15. 15.
    R. Maartens, Class. Quantum Grav. 12, 1455 (1995)CrossRefGoogle Scholar
  16. 16.
    W. Israel, Ann. Phys. 100, 310 (1976)CrossRefGoogle Scholar
  17. 17.
    W. Israel, J.M. Stewart, Ann. Phys. 118, 341 (1979)CrossRefGoogle Scholar
  18. 18.
    B.P. Brassel, S.D. Maharaj, G. Govender, Adv. Math. Phys. 2015, 274251 (2015)CrossRefGoogle Scholar
  19. 19.
    B. Modak, J. Astrophys. Astron. 5, 317 (1984)CrossRefGoogle Scholar
  20. 20.
    A.M. Msomi, K.S. Govinder, S.D. Maharaj, Gen. Relativ. Gravit. 43, 1685 (2011)CrossRefGoogle Scholar
  21. 21.
    O. Bergmann, Phys. Lett. A 82, 383 (1981)MathSciNetCrossRefGoogle Scholar
  22. 22.
    R. Maartens, J. Triginer, Phys. Rev. D 56, 4640 (1997)CrossRefGoogle Scholar
  23. 23.
    J. Martínez, Phys. Rev. D 53, 6921 (1996)CrossRefGoogle Scholar
  24. 24.
    K.S. Govinder, M. Govender, Phys. Lett. A 283, 71 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations