Advertisement

Photo-thermoelastic interactions in a 2D semiconducting medium

  • Faris S. Alzahrani
  • Ibrahim A. AbbasEmail author
Regular Article
  • 16 Downloads

Abstract.

Photo-thermoelastic interactions in a two-dimensional semiconductor medium are studied by using mathematical methods in the context of coupled thermoelastic theory and plasma waves with one thermal relaxation time. The Laplace-Fourier transformations and eigenvalues approach are used to obtain the general solutions for any set of boundary conditions. The medium is initially assumed to be at rest and due to a moving thermal source with a constant speed, which are traction free. A semiconductor medium like silicon has been considered. In the conclusion, the outcomes are represented graphically to show the influences of heat source speed and the relaxation time. The eigenvalues approach gives the analytical solution without any assumed restriction on the actual physical quantities.

References

  1. 1.
    M.A. Biot, J. Appl. Phys. 27, 240 (1956)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    H.W. Lord, Y. Shulman, J. Mech. Phys. Solids 15, 299 (1967)ADSCrossRefGoogle Scholar
  3. 3.
    A. Green, K. Lindsay, J. Elast. 2, 1 (1972)CrossRefGoogle Scholar
  4. 4.
    A. Mandelis, Photoacoustic and Thermal Wave Phenomena in Semiconductors (Elsevier, 1987)Google Scholar
  5. 5.
    D.P. Almond, P. Patel, Photothermal Science and Techniques, Vol. 10 (Springer Science & Business Media, 1996)Google Scholar
  6. 6.
    A. Mandelis, P. Hess, Semiconductors and Electronic Materials, Vol. 4 (Spie Press, 2000)Google Scholar
  7. 7.
    F.A. McDonald, G.C. Wetsel Jr., J. Appl. Phys. 49, 2313 (1978)ADSCrossRefGoogle Scholar
  8. 8.
    W. Jackson, N.M. Amer, J. Appl. Phys. 51, 3343 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    R. Stearns, G. Kino, Appl. Phys. Lett. 47, 1048 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    D. Todorović, Rev. Sci. Instrum. 74, 578 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    D. Todorović, Rev. Sci. Instrum. 74, 582 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Song et al., J. Phys. D 41, 155106 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    J. Opsal, A. Rosencwaig, Appl. Phys. Lett. 47, 498 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    A. Rosencwaig, J. Opsal, D.L. Willenborg, Appl. Phys. Lett. 43, 166 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    S. Santra et al., J. Therm. Stresses 38, 309 (2015)CrossRefGoogle Scholar
  16. 16.
    D.S. Mashat, A.M. Zenkour, A.E. Abouelregal, Mech. Adv. Mater. Struct. 22, 925 (2015)CrossRefGoogle Scholar
  17. 17.
    E.M. Hussein, J. Therm. Stresses 38, 133 (2015)CrossRefGoogle Scholar
  18. 18.
    A. Sur, M. Kanoria, J. Solid Mech. 6, 54 (2014)Google Scholar
  19. 19.
    M.A. Ezzat et al., J. Electromagn. Waves Appl. 28, 64 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Deswal, K.K. Kalkal, Wave Motion 51, 100 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    M.A. Ezzat, A.S. El-Karamany, M.A. Fayik, J. Therm. Stresses 35, 637 (2012)CrossRefGoogle Scholar
  22. 22.
    M.A. Ezzat, A.S. El-Karamany, J. Appl. Polym. Sci. 124, 2187 (2012)CrossRefGoogle Scholar
  23. 23.
    A.M. Zenkour, A.E. Abouelregal, Arch. Mech. 67, 53 (2015)Google Scholar
  24. 24.
    H.M. Youssef, J. Vib. Control 22, 3840 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Y. Wang, D. Liu, Q. Wang, Acta Mech. Solida Sin. 28, 285 (2015)CrossRefGoogle Scholar
  26. 26.
    H.H. Sherief, A.M. Abd El-Latief, Math. Mech. Solids 20, 512 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    F.S. Alzahrani, I.A. Abbas, Eur. Phys. J. Plus 131, 289 (2016)CrossRefGoogle Scholar
  28. 28.
    A.D. Hobiny, I.A. Abbas, Eur. Phys. J. Plus 131, 424 (2016)CrossRefGoogle Scholar
  29. 29.
    Y. Song et al., Int. J. Solids Struct. 47, 1871 (2010)CrossRefGoogle Scholar
  30. 30.
    Y. Song, J. Bai, Z. Ren, Int. J. Thermophys. 33, 1270 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Song, J. Bai, Z. Ren, Acta Mech. 223, 1545 (2012)MathSciNetCrossRefGoogle Scholar
  32. 32.
    I.A. Abbas, Int. J. Comput. Mater. Sci. Eng. 05, 1650016 (2016)Google Scholar
  33. 33.
    A.D. Hobiny, I.A. Abbas, Mech. Time-Depend. Mater. 21, 61 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    I.A. Abbas, K. Aly, F.S. Alzahrani, J. Adv. Phys. 6, 402 (2017)CrossRefGoogle Scholar
  35. 35.
    I.A. Abbas, K. Aly, J. Adv. Phys. 6, 317 (2017)CrossRefGoogle Scholar
  36. 36.
    A.D. Hobiny, I.A. Abbas, Mech. Time-Depend. Mater. 21, 61 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    A.D. Hobiny, I.A. Abbas, Eur. Phys. J. Plus 133, 11 (2018)CrossRefGoogle Scholar
  38. 38.
    D. Todorović, J. Phys. IV 125, 551 (2005)Google Scholar
  39. 39.
    A.S. El-Karamany, M.A. Ezzat, Math. Mech. Solids 16, 334 (2011)MathSciNetCrossRefGoogle Scholar
  40. 40.
    M.A. Ezzat, Physica B 406, 30 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    A. Mandelis, M. Nestoros, C. Christofides, Opt. Eng. 36, 459 (1997)ADSCrossRefGoogle Scholar
  42. 42.
    N.C. Das, A. Lahiri, R.R. Giri, Indian J. Pure Appl. Math. 28, 1573 (1997)MathSciNetGoogle Scholar
  43. 43.
    I.A. Abbas, Comput. Math. Appl. 68, 2036 (2014)MathSciNetCrossRefGoogle Scholar
  44. 44.
    I.A. Abbas, Can. J. Phys. 93, 585 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    H. Stehfest, Commun. ACM 13, 47 (1970)CrossRefGoogle Scholar
  46. 46.
    Y. Song et al., Int. J. Thermophys. 35, 305 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Department of MathematicsKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of mathematics, Faculty of ScienceSohag UniversitySohagEgypt

Personalised recommendations