Advertisement

Effects of magnetic wiggler field and chirped laser pulse on the wakefield amplitude and electron energy gain in a wiggler-assisted laser wakefield accelerator

  • A. Dezhpour
  • S. JafariEmail author
  • H. Mehdian
Regular Article
  • 24 Downloads

Abstract.

Wakefield generation and GeV electron acceleration in a plasma medium by an ultra-short and intense chirped laser pulse in the presence of a magnetic wiggler field are presented. To increase the wakefield amplitude and to maximize the acceleration gradient, we employ a helical magnetostatic wiggler. An analytical theory of wakefield generation and electron energy gain has been presented which includes the effects of the wiggler field. It was found that the wakefield spectrum and electron energy gain in the wiggler-assisted wakefield accelerator can be increased significantly compared to the non-wiggler situation ones. Numerical simulations reveal that for moderate wiggler magnetic field strengths, wakefield amplitude and electron energy gain have significant peaks in bubble-like structures. Besides, when the wiggler wavelength is clearly larger than the plasma wavelength, the wakefield amplitude and electron energy gain significantly enhance. In addition, it was found that the electron bunches can be enhanced by increasing the wiggler field strength or wiggler wavelength. The effect of the laser chirp parameter on wakefield and electron energy gain have also been investigated. It was concluded that in a wiggler-assisted laser wakefield accelerator, the electron energy and wakefield evolution can be tuned by the wiggler field strength, wiggler wavelength, and laser chirp parameter. This concept opens a path toward new generation of plasma accelerators based on wiggler structures.

References

  1. 1.
    D. Gauthier, E. Allaria, M. Coreno, I. Cudin, H. Dacasa, M.B. Danailov, A. Demidovich, S. Di Mitri, B. Diviacco, E. Ferrari, P. Finneti, Nat. Commun. 7, 13688 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    X. Yang, G. Vieux, E. Brunetti, B. Ersfeld, J.P. Farmer, R.C. Issac, G. Raj, S.M. Wiggins, G.H. Welsh, S.R. Yoffe, Sci. Rep. 5, 13333 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    J. Cowley, C. Thornton, C. Arran, R.J. Shalloo, L. Corner, G. Cheung, C.D. Gregory, Phys. Rev. Lett. 119, 044802 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    T.Z. Zhao, K. Behm, Z.H. He, A. Maksimchuk, J.A. Nees, V. Yanovsky, A.G.R. Thomas, K. Krushelnick, Plasma Phys. Control. Fusion 58, 105003 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    M. Litos, E. Adli, W. An, C.I. Clarke, C.E. Clayton, Sébastien Corde, J.P. Delahaye, R.J. England, A.S. Fisher, J. Frederico, S. Gessner, Nature 515, 92 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    T. Baeva, S. Gordienko, A. Pukhov, Phys. Rev. E 74, 046404 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    S. Jafari, M. Nilkar, A. Ghasemizad, H. Mehdian, Phys. Plasmas 21, 104503 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    S.M. Hooker, Nat. Photon. 7, 775 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    E. Esarey, C.B. Schroeder, W.P. Leemans, Rev. Mod. Phys. 81, 1229 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, V. Malka, Nature 444, 737 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    F. Albert, A.G.R. Thomas, Plasma Phys. Controll. Fusion 58, 10300 (2016)CrossRefGoogle Scholar
  12. 12.
    H.C. Wu, Z.M. Sheng, Q.L. Dong, H. Xu, J. Zhang, Phys. Rev. E 75, 016407 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    V. Malka, Phys. Plasmas 19, 055501 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    P. Jha, R.K. Mishra, G. Raj, A.K. Upadhyay, Phys. Plasmas 14, 053107 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    N. Saedjalil, S. Jafari, High Energy Dens. Phys. 19, 48 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    H. Mehdian, A. Kargarian, K. Hajisharifi, Phys. Plasmas 22, 063102 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    M. Abedi-Varaki, S. Jafari, J. Opt. Soc. Am. B 35, 1165 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    T. Katsouleas, J.M. Dawson, Phys. Rev. Lett. 51, 392 (1983)ADSCrossRefGoogle Scholar
  19. 19.
    V.A. Balakirev, V.D. Levchenko, Laser Part. Beams 19, 597 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    A. Holkundkar, G. Brodin, M. Marklund, Phys. Rev. E 84, 036409 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    K.P. Singh, V.L. Gupta, L. Bhasin, V.K. Tripath, Phys. Plasmas 10, 1493 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    R. Prasad, R. Singh, V.K. Tripathi, Laser Part. Beams 27, 459 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    P. Jha, A. Saroch, R.K. Mishra, A.K. Upadhyay, Phys. Rev. ST Accel. Beams 15, 081301 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    V. Petrillo, C. Maroli, Phys. Plasmas 3, 1773–1775 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    C. Maroli, V. Petrillo, R. Bonifacio, Phys. Rev. Lett. 76, 3578 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    A.G. Khachatryan, F.A. van Goor, K.J. Boller, Phys. Rev. E 70, 067601 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    A.G. Khachatryan, F.A. Van Goor, J.W. Verschuur, K.J. Boller, Phys. Plasmas 12, 062116 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    P.A. Walker, P.D. Alesini, A.S. Alexandrova, Maria Pia Anania, N.E. Andreev, I. Andriyash, A. Aschikhin et al., J. Phys. Conf. Ser. 874, 012029 (2017)CrossRefGoogle Scholar
  29. 29.
    A.G.R. Thomas, Z. Najmudin, S.P.D. Mangles, C.D. Murphy, A.E. Dangor, C. Kamperidis, K.L. Lancaster, Phys. Rev. Lett. 98, 095004 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    M.C. Kaluza, H.P. Schlenvoigt, S.P.D. Mangles, A.G.R. Thomas, A.E. Dangor, H. Schwoerer, W.B. Mori, Z. Najmudin, K.M. Krushelnick, Phys. Rev. Lett. 105, 115002 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    B.S. Sharma, A. Jain, N.K. Jaiman, D.N. Gupta, D.G. Jang, H. Suk, V.V. Kulagin, Phys. Plasmas 21, 023108 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    J.E. Ralph, K.A. Marsh, A.E. Pak, W. Lu, C.E. Clayton, F. Fang, W.B. Mori, C. Joshi, Phys. Rev. Lett. 102, 175003 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    M. Abedi-Varaki, S. Jafari, Phys. Plasmas 24, 082309 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    S. Jafari, Laser Phys. Lett. 12, 075002 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    H. Shirvani, S. Jafari, J. Synchrotron Radiat. 25, 316 (2018)CrossRefGoogle Scholar
  36. 36.
    E. Abbasi, S. Jafari, R. Hedayati, J. Synchrotron Radiat. 23, 1282 (2016)CrossRefGoogle Scholar
  37. 37.
    N. Esmaeildoost, S.H. Zolghadr, S. Jafari, J. Appl. Phys. 121, 113106 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    E. Yazdani, R. Sadighi-Bonabi, H. Afarideh, Z. Riazi, H. Hora, J. Appl. Phys. 116, 103302 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    M. Rezaei-Pandari, A.R. Niknam, R. Massudi, F. Jahangiri, H. Hassaninejad, Phys. Plasmas 24, 023112 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of GuilanRashtIran
  2. 2.Department of Physics and Institute for Plasma ResearchKharazmi UniversityTehranIran

Personalised recommendations