Advertisement

Resonance interaction between uniformly rotating two-level entangled atoms

  • Huabing CaiEmail author
  • Zhen Li
  • Zhongzhou Ren
Regular Article
  • 50 Downloads

Abstract.

We investigate the influence of acceleration and boundaries on the resonance interaction between two identical two-level entangled atoms in synchronous circular motions mediated by a fluctuating massless quantum scalar field. In the ultra-relativistic limit, we give the analytical results of the resonance interaction energy either in the absence or in the presence of a reflecting plane boundary. Our results indicate that the interatomic resonance interaction energy depends on the atomic intrinsic energy level spacing, the atomic acceleration, the interatomic separation, and the distance of the atoms from the boundary. By adjusting these parameters, the resonance interatomic force can be either enhanced or weakened and even its direction can be altered as compared with the case of two inertial entangled atoms in an unbounded Minkowski spacetime. Our work clearly suggests that the resonance interatomic interaction can be regulated and controlled significantly by changing the atomic motion state and the field’s boundary condition.

References

  1. 1.
    W. Heitler, The Quantum Theory of Radiation, 3rd ed. (Clarendon Press, Oxford, 1954)Google Scholar
  2. 2.
    P.W. Milonni, Phys. Rep. 25, 1 (1976)ADSCrossRefGoogle Scholar
  3. 3.
    W.E. Lamb Jr., R.C. Retherford, Phys. Rev. 72, 241 (1947)ADSCrossRefGoogle Scholar
  4. 4.
    J. Dalibard, J. Dupont-Roc, C. Cohen-Tannoudji, J. Phys. (Paris) 43, 1617 (1982)CrossRefGoogle Scholar
  5. 5.
    J. Dalibard, J. Dupont-Roc, C. Cohen-Tannoudji, J. Phys. (Paris) 45, 637 (1984)CrossRefGoogle Scholar
  6. 6.
    H.B.G. Casimir, K. Ned. Akad. Wetensch. Proc. 51, 793 (1948)Google Scholar
  7. 7.
    H.B.G. Casimir, D. Polder, Phys. Rev. 73, 360 (1948)ADSCrossRefGoogle Scholar
  8. 8.
    S.A. Fulling, Phys. Rev. D 7, 2850 (1973)ADSCrossRefGoogle Scholar
  9. 9.
    P.C.W. Davies, J. Phys. A: Math. Gen. 8, 609 (1975)ADSCrossRefGoogle Scholar
  10. 10.
    W.G. Unruh, Phys. Rev. D 14, 870 (1976)ADSCrossRefGoogle Scholar
  11. 11.
    J. Audretsch, R. Müller, Phys. Rev. A 50, 1755 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    H. Yu, S. Lu, Phys. Rev. D 72, 064022 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Z. Zhu, H. Yu, S. Lu, Phys. Rev. D 73, 107501 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    H. Yu, Z. Zhu, Phys. Rev. D 74, 044032 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    J. Audretsch, R. Müller, Phys. Rev. A 52, 629 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    L. Rizzuto, Phys. Rev. A 76, 062114 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    R. Passante, Phys. Rev. A 57, 1590 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    Z. Zhu, H. Yu, Phys. Rev. A 82, 042108 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    O. Levin, Y. Peleg, A. Peres, J. Phys. A: Math. Gen. 26, 3001 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    V.A. De Lorenci, R.D.M. De Paola, N.F. Svaiter, Class. Quantum Grav. 17, 4241 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Jin, J. Hu, H. Yu, Ann. Phys. 344, 97 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    J. Chen, J. Hu, H. Yu, Ann. Phys. 353, 317 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    J. Yang, H. Yu, Ann. Phys. 363, 194 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    D.P. Craig, T. Thirunamachandran, Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions (Dover, 1998)Google Scholar
  25. 25.
    A. Salam, Molecular Quantum Electrodynamics: Long-Range Intermolecular Interactions (Wiley, 2010)Google Scholar
  26. 26.
    L. Rizzuto, R. Passante, F. Persico, Phys. Rev. A 70, 012107 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    P.W. Milonni, S.M.H. Rafsanjani, Phys. Rev. A 92, 062711 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    P.R. Berman, Phys. Rev. A 91, 042127 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    U.D. Jentschura, V. Debierre, Phys. Rev. A 95, 042506 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    P. Barcellona, R. Passante, L. Rizzuto, S.Y. Buhmann, Phys. Rev. A 94, 012705 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    L. Rizzuto, M. Lattuca, J. Marino, A. Noto, S. Spagnolo, W. Zhou, R. Passante, Phys. Rev. A 94, 012121 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    W. Zhou, R. Passante, L. Rizzuto, Phys. Rev. D 94, 105025 (2016)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    M. Lattuca, J. Marino, A. Noto, R. Passante, L. Rizzuto, S. Spagnolo, W. Zhou, J. Phys.: Conf. Ser. 880, 012042 (2017)Google Scholar
  34. 34.
    R. Incardone, T. Fukuta, S. Tanaka, T. Petrosky, L. Rizzuto, R. Passante, Phys. Rev. A 89, 062117 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    V. Notararigo, R. Passante, L. Rizzuto, Sci. Rep. 8, 5193 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    W. Zhou, L. Rizzuto, R. Passante, Phys. Rev. A 97, 042503 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    W. Zhou, R. Passante, L. Rizzuto, Symmetry 10, 185 (2018)CrossRefGoogle Scholar
  38. 38.
    D. Meschede, W. Jhe, E.A. Hinds, Phys. Rev. A 41, 1587 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsNanjing UniversityNanjingChina
  2. 2.School of Physics Science and EngineeringTongji UniversityShanghaiChina

Personalised recommendations