Advertisement

Time-fractional Schrödinger equation from path integral and its implications in quantum dots and semiconductors

  • Rami Ahmad El-NabulsiEmail author
Regular Article

Abstract.

A new fractional Schrödinger equation is constructed from path integral based on the notions of fractional velocity recently introduced in literature and the concept of fractional actionlike variational approach motivated from fractal arguments. The new equation is characterized by an emergent position-dependent mass and a time-dependent effective potential where both have important implications in semiconductors and molecular physics. Based on this equation, the problem of the quantum particle in a box is analyzed where the consequent outcomes are applied to semiconductors. It was observed that quantum size effects in nanostructures are significant and enhancement in the ground energy state for specific values of the fractional parameter is obtained. The fractional density of states for the case of bulk materials with no confinement is derived and it was revealed that a significant number of available states may be occupied even for lengths of the order of picometers. Additional results were obtained and discussed accordingly.

References

  1. 1.
    N. Laskin, Phys. Rev. E 66, 056108 (2002)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    N. Laskin, Phys. Lett. A 268, 298 (2000)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Zubair, Fractional Diffusion Equations & Anomalous Diffusion (Taylor & Francis, 2018)Google Scholar
  4. 4.
    G. Calcagni, G. Nardelli, M. Scalisi, J. Math. Phys. 53, 102110 (2012)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    M.M.I. Nayga, J.P.H. Esguerra, Int. J. Mod. Phys.: Conf. Ser. 36, 1560015 (2015)Google Scholar
  6. 6.
    H. Kleinert, EPL 100, 10001 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    M. Zubair, M.J. Mughal, Q.A. Naqvi, J. Electromagn. Res. Appl. 25, 1481 (2011)Google Scholar
  8. 8.
    M.M.I. Nayga, J.P.H. Esguerra, Int. J. Mod. Phys.: Conf. Ser. 36, 1560015 (2015)Google Scholar
  9. 9.
    Y. Zhang, X. Liu, M.R. Belic, W. Zhong, Y. Zhang, M. Xiao, Phys. Rev. Lett. 115, 180403 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    S. Longhi, Opt. Lett. 40, 1117 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    A. Liemert, A. Kienle, Mathematics 4, 31 (2016)CrossRefGoogle Scholar
  12. 12.
    A. Tofighi, Acta Phys. Pol. A 116, 114 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    M. Zubair, M.J. Mughal, Q.A. Naqvi, Prog. Electromagn. Res. Lett. 19, 137 (2010)CrossRefGoogle Scholar
  14. 14.
    Y. Luchko, J. Math. Phys. 54, 012111 (2013)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    B. Al-Saqabi, L. Boyadjiev, Y. Luchko, Eur. Phys. J. ST 2013, 1779 (2013)CrossRefGoogle Scholar
  16. 16.
    J.L.A. Dubbeldam, Z. Tomovski, T. Sandev, Fract. Calc. Appl. Anal. 18, 1179 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    M.S. Miller, B. Ross, An Introduction to the Fractional Integrals and Derivatives-Theory and Application (Wiley, New York, 1993)Google Scholar
  18. 18.
    I. Podlubny, Fractional Differential Equations (Academic, New York, 1999)Google Scholar
  19. 19.
    R. Herrmann, Fractional Calculus: An Introduction for Physicists (World Scientific Publishing Company, 2011)Google Scholar
  20. 20.
    R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific Publishing, River Edge, NJ, USA, 2000)Google Scholar
  21. 21.
    B.J. West, M. Bologna, P. Grigolini, Physics of Fractal Operators (Institute for Nonlinear Science, Springer, New York, NY, USA, 2003)Google Scholar
  22. 22.
    R.L. Magin, Fractional Calculus in Bioengineering (Begell House, Redding, Conn, USA, 2006)Google Scholar
  23. 23.
    M. Naber, J. Math. Phys. 45, 3339 (2004)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    X.Y. Jiang, Eur. Phys. J. ST 193, 61 (2011)CrossRefGoogle Scholar
  25. 25.
    A. Iomin, Phys. Rev. E 80, 022103 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    A. Iomin, Chaos, Solitons Fractals 44, 348 (2011)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Z. Odibat, S. Momani, A. Alawneh, J. Phys.: Conf. Ser. 96, 012066 (2008)Google Scholar
  28. 28.
    B. Hicdurmaz, A. Ashyralyev, Numer. Funct. Anal. Optim. 38, 1215 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    P. Gorka, H. Prado, J. Trujillo, Integral Equ. Operator Theor. 87, 1 (2017)CrossRefGoogle Scholar
  30. 30.
    B.N. Narahari Achar, B.T. Yale, J.W. Hanneken, Adv. Math. Phys. 2013, ID290216 (2013)Google Scholar
  31. 31.
    M. Caputo, M. Fabrizio, Prog. Fract. Differ. Appl. 1, 73 (2015)Google Scholar
  32. 32.
    J. Losada, J.J. Nieto, Prog. Fract. Differ. Appl. 1, 87 (2015)Google Scholar
  33. 33.
    A. Atangana, Appl. Math. Comput. 273, 948 (2016)MathSciNetGoogle Scholar
  34. 34.
    U.N. Katugampola, Bull. Math. Anal. Appl. 6, 1 (2014)MathSciNetGoogle Scholar
  35. 35.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 757 (2016)CrossRefGoogle Scholar
  36. 36.
    D. Prodanov, J. Phys.: Conf. Ser. 701, 012031 (2016)Google Scholar
  37. 37.
    D. Prodanov, Fract. Calc. Appl. Anal. 19, 173 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    D. Prodanov, Chaos, Solitons Fractals 102, 236 (2017)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    D. Prodanov, Fractals Fract. 2, 1 (2018)Google Scholar
  40. 40.
    A. Karci, Univ. J. Eng. Sci. 1, 110 (2013)Google Scholar
  41. 41.
    A. Karci, Univ. J. Eng. Sci. 3, 53 (2015)Google Scholar
  42. 42.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures On Physics, Vol. III (Addison-Wesley, Reading, MA, 1965)Google Scholar
  43. 43.
    R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, 1965)Google Scholar
  44. 44.
    R.A. El-Nabulsi, D.F.M. Torres, J. Math. Phys. 49, 053521 (2008)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    R.A. El-Nabulsi, Anal. Theor. Appl. 30, 1 (2014)CrossRefGoogle Scholar
  46. 46.
    A.B. Malinowska, D.F.M. Torres, Introduction to the Fractional Calculus of Variations (Imperial College Press, London, UK, 2012)Google Scholar
  47. 47.
    G. Calcagni, Adv. Theor. Math. Phys. 16, 549 (2012)MathSciNetCrossRefGoogle Scholar
  48. 48.
    G. Calcagni, Phys. Rev. Lett. 104, 251301 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    V.A. Diaz, A. Giusti, J. Math. Phys. 59, 033509 (2017)ADSGoogle Scholar
  50. 50.
    R.A. El-Nabulsi, J. Stat. Phys. 172, 1617 (2018)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948)ADSCrossRefGoogle Scholar
  52. 52.
    R.P. Feynman, R.P. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)Google Scholar
  53. 53.
    G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructure (Les Editions de Physique, Les Ulis, France, 1988)Google Scholar
  54. 54.
    D.L. Smith, C. Mailhiot, Rev. Mod. Phys. 62, 173 (1990)ADSCrossRefGoogle Scholar
  55. 55.
    G.T. Einevoll, Phys. Rev. B 42, 3497 (1990)ADSCrossRefGoogle Scholar
  56. 56.
    R.A. Morrow, Phys. Rev. B 35, 8074 (1987)ADSCrossRefGoogle Scholar
  57. 57.
    P. Harrison, Quantum Wells, Wires and Dots (Wiley and Sons, New York, 2000)Google Scholar
  58. 58.
    F.Q. Zhao, X.X. Liang, S.L. Ban, Eur. Phys. J. B 33, 3 (2003)ADSCrossRefGoogle Scholar
  59. 59.
    A. de Saavedra, F. Boronat, A. Polls, A. Fabrocini, Phys. Rev. B 50, 4248 (1994)ADSCrossRefGoogle Scholar
  60. 60.
    R. Renan, M.H. Pacheco, C.A.S. Almeida, J. Phys. A 33, L509 (2000)ADSCrossRefGoogle Scholar
  61. 61.
    H. Rajbongshi, India J. Phys. 92, 357 (2018)ADSCrossRefGoogle Scholar
  62. 62.
    N. Amir, S. Iqbal, Commun. Theor. Phys. 62, 790 (2014)CrossRefGoogle Scholar
  63. 63.
    S. Meyur, S. Maji, S. Debnath, Adv. High Energy Phys. 2014, 952597 (2014)CrossRefGoogle Scholar
  64. 64.
    S.-H. Dong, M. Lozada-Cassou, Phys. Lett. A 337, 313 (2005)ADSCrossRefGoogle Scholar
  65. 65.
    A.P. Zhang, P. Shi, Y.W. Ling, Z.W. Hua, Acta Phys. Pol. A 120, 987 (2011)CrossRefGoogle Scholar
  66. 66.
    G.-Y. Long, S.-J. Qin, Z.-H. Yang, G.-J. Guo, Int. J. Theor. Phys. 48, 981 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    A. Iserles, K. Kropielnicka, P. Singh, On the discretization of the semiclassical Schrödinger equation with time-dependent potential, Technical Report NA2015/02 (2015)Google Scholar
  68. 68.
    V.V. Dodonov, V.I. Man’ko, D.E. Nikonov, Phys. Lett. A 162, 359 (1992)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    J. Campbell, J. Phys. A 42, 365212 (2009)MathSciNetCrossRefGoogle Scholar
  70. 70.
    V. Gurarie, Quantum Field Theory, Lectures given at the University of Colorado (Boulder, Fall 2015)Google Scholar
  71. 71.
    P. Harrison, Quantum Wells, Wires and Dots: Theoretical And Computational Physics of Semiconductor Nanostructures (Wiley-Interscience, 2005)Google Scholar
  72. 72.
    O. Manasreh, Semiconductor Heterojunctions and Nanostructures (Nanoscience & Technology) (McGraw-Hill, New York, 2005)Google Scholar
  73. 73.
    P. Yu, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 2005) sect. 2.6Google Scholar
  74. 74.
    I. Filikhin, S.G. Matinyan, B. Vlahovic, Quantum Mechanics of Semiconductor Quantum Dots and Rings, Fingerprints in the Optical and Transport Properties of Quantum Dots (Ameenah Al-Ahmadi, IntechOpen, 2012)  https://doi.org/10.5772/35660, available from: https://doi.org/intechopen.com/books/fingerprints-in-the-optical-and-transport-properties-of-quantum-dots/quantum-mechanics-of-semiconductor-quantum-dots-andrings
  75. 75.
    G.W. Bryant, Phys. Rev. Lett. 59, 1140 (1987)ADSCrossRefGoogle Scholar
  76. 76.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications, 1983) pp. 355, 435Google Scholar
  77. 77.
    L. Jahan, A. Boda, A. Chatterjee, AIP Conf. Proc. 1661, 080008 (2015)CrossRefGoogle Scholar
  78. 78.
    L. Shi, Z. Yan, J. Appl. Phys. 114, 194301 (2013)ADSCrossRefGoogle Scholar
  79. 79.
    J.J. Davies, The Physics of Low-Dimensional Semiconductors: An Introduction, 6th edition (Cambridge University Press, Cambridge, 2006)Google Scholar
  80. 80.
    E. Reyes-Gomez, L.E. Oliveira, J. Appl. Phys. 85, 4045 (1999)ADSCrossRefGoogle Scholar
  81. 81.
    E. Reyes-Gomez, A. Matos-Abiague, M. de Dios-Leyva, L.E. Oliveira, Phys. Status Solidi B 220, 71 (2000)ADSCrossRefGoogle Scholar
  82. 82.
    R.T. Sibatov, V.V. Uchaikin, Semiconductors 41, 335 (2007)ADSCrossRefGoogle Scholar
  83. 83.
    R.T. Sibatov, V.V. Uchaikin, Phys.-Usp. 52, 1019 (2009)ADSCrossRefGoogle Scholar
  84. 84.
    V.V. Uchaikin, R.T. Sibatov, Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems (World Scientific, Singapore, 2013)Google Scholar
  85. 85.
    K.Y. Choo, S.V. Muniandy, Int. J. Mod. Phys.: Conf. Ser. 36, 1560008 (2015)Google Scholar
  86. 86.
    K.Y. Choo, S.V. Muniandy, K.L. Woon, M.T. Gan, D.S. Ong, Org. Electron. 41, 157 (2017)CrossRefGoogle Scholar
  87. 87.
    J.A.K. Suykens, Phys. Lett. A 373, 1201 (2009)ADSCrossRefGoogle Scholar
  88. 88.
    Z.-Y. Li, J.-L. Fu, L.-Q. Chen, Phys. Lett. A 374, 106 (2009)ADSMathSciNetCrossRefGoogle Scholar
  89. 89.
    T.F. Kamalov, J. Phys. Conf. Ser. 442, 012051 (2013)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Athens Institute for Education and ResearchMathematics and Physics DivisionsAthensGreece

Personalised recommendations