Surfactant assisted sonochemical synthesis of zinc tungstate nanoparticles: Anode for Li-ion battery and photocatalytic activities

  • N. S. Pavithra
  • G. NagarajuEmail author
  • R. Viswanatha
Regular Article


Herein, we report a simple, economic and low-cost surfactant assisted sonochemical synthesis of ZnWO4 nanoparticles. The structural and morphological features of nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-visible spectroscopy, photoluminescence (PL) spectroscopy and transmission electron microscopy. ZnWO4 had been proven to be one of the most promising electrodes for energy storage and found that the discharge capacity was of 173mA h g^-1 even after 20 cycles at 0.1C rate. In addition to this, good photocatalytic degradation efficiency (98.6% in 120 minutes) was also achieved through Rhodamine B as a model of pollutant system.


  1. 1.
    M. Brik, V. Nagirnyi, M. Kirm, Mater. Chem. Phys. 134, 1113 (2012)CrossRefGoogle Scholar
  2. 2.
    B. Xu, D. Qian, Z. Wang, Y.S. Meng, Mater. Sci. Eng. R 73, 51 (2012)CrossRefGoogle Scholar
  3. 3.
    Y. Su, B. Zhu, K. Guan, S. Gao, L. Lv, C. Du, L. Peng, L. Hou, X. Wang, J. Phys. Chem. C 116, 18508 (2012)CrossRefGoogle Scholar
  4. 4.
    B.R. Huang, T.C. Lin, K.T. Chu, Y.K. Yang, J.C. Lin, Surf. Coat. Technol. 231, 289 (2013)CrossRefGoogle Scholar
  5. 5.
    L. You, Y. Cao, Y. Sun, P. Sun, T. Zhang, Y. Du, G. Lu, Sens. Actuat. B: Chem. 161, 799 (2012)CrossRefGoogle Scholar
  6. 6.
    H. Fu, J. Lin, L. Zhang, Y. Zhu, Appl. Catalysis A 306, 58 (2006)CrossRefGoogle Scholar
  7. 7.
    J. Bi, L. Wu, Z. Li, Z. Ding, X. Wang, X. Fu, J. Alloys Compd. 480, 684 (2009)CrossRefGoogle Scholar
  8. 8.
    K. Garadkar, L. Ghule, K. Sapnar, S. Dhole, Mater. Res. Bull. 48, 1105 (2013)CrossRefGoogle Scholar
  9. 9.
    Y. Huang, Y. Gao, Q. Zhang, J.J. Cao, R.J. Huang, W. Ho, S.C. Lee, Appl. Catalysis A 515, 170 (2016)CrossRefGoogle Scholar
  10. 10.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, J. Mater. Sci. 28, 7991 (2017)Google Scholar
  11. 11.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Mater. Res. Innov. (2018)
  12. 12.
    K. Holmberg, J. Colloid Interface Sci. 274, 355 (2004)CrossRefGoogle Scholar
  13. 13.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, J. Mater. Sci. 28, 11420 (2017)Google Scholar
  14. 14.
    L. Zhang, Z. Wang, L. Wang, Y. Xing, Y. Zhang, Mater. Lett. 108, 9 (2013)CrossRefGoogle Scholar
  15. 15.
    L.L. Long, A.Y. Zhang, J. Yang, X. Zhang, H.-Q. Yu, ACS Appl. Mater. Interfaces 6, 16712 (2014)CrossRefGoogle Scholar
  16. 16.
    H.W. Shim, I.S. Cho, K.S. Hong, A.H. Lim, D.W. Kim, J. Phys. Chem. C 115, 16228 (2011)CrossRefGoogle Scholar
  17. 17.
    H.W. Shim, A.H. Lim, G.H. Lee, H.C. Jung, D.W. Kim, Nanoscale Res. Lett. 7, 9 (2012)CrossRefGoogle Scholar
  18. 18.
    L.L. Xing, S. Yuan, B. He, Y.Y. Zhao, X.L. Wu, X.Y. Xue, Chemistry Asian J. 8, 1530 (2013)CrossRefGoogle Scholar
  19. 19.
    S. Kundu, L. Ma, Y. Chen, H. Liang, J. Photochem. Photobiol. A Chem. 346, 249 (2017)CrossRefGoogle Scholar
  20. 20.
    J. Lu, M. Liu, S. Zhou, X. Zhou, Y. Yang, Dyes Pigments 136, 1 (2017)CrossRefGoogle Scholar
  21. 21.
    H. Eranjaneya, G.T. Chandrappa, Trans. Indian Ceram. Soc. 75, 133 (2016)CrossRefGoogle Scholar
  22. 22.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon, Nature 407, 496 (2000)CrossRefGoogle Scholar
  23. 23.
    A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nat. Mater. 4, 366 (2005)CrossRefGoogle Scholar
  24. 24.
    C. Zhang, H. Zhang, K. Zhang, X. Li, Q. Leng, C. Hu, ACS Appl. Mater. Interfaces 6, 14423 (2014)CrossRefGoogle Scholar
  25. 25.
    G. Huang, Y. Zhu, Mater. Sci. Eng. B 139, 201 (2007)CrossRefGoogle Scholar
  26. 26.
    T. Ida, K. Shinozaki, T. Honma, T. Komatsu, J. Asian Ceram. Soc. 2, 253 (2014)CrossRefGoogle Scholar
  27. 27.
    R. Jia, Q. Wu, G. Zhang, Y. Ding, J. Mater. Sci. 42, 4887 (2007)CrossRefGoogle Scholar
  28. 28.
    X.C. Song, E. Yang, R. Ma, H.F. Chen, Z.L. Ye, M. Luo, Appl. Phys. A: Mater. Sci. Process. 94, 185 (2009)CrossRefGoogle Scholar
  29. 29.
    J. Lin, J. Lin, Y. Zhu, Inorg. Chem. 46, 8372 (2007)CrossRefGoogle Scholar
  30. 30.
    W. Yan, S.-C. Zhang, L.-W. Zhang, Y.-F. Zhu, Chem. Res. Chin. Univ. 23, 465 (2007)CrossRefGoogle Scholar
  31. 31.
    C. Yu, C.Y. Jimmy, Mater. Sci. Eng. B 164, 16 (2009)CrossRefGoogle Scholar
  32. 32.
    X. Zhao, Y. Zhu, Environ. Sci. Technol. 40, 3367 (2006)CrossRefGoogle Scholar
  33. 33.
    T. Aarthi, G. Madras, Ind. Eng. Chem. Res. 46, 7 (2007)CrossRefGoogle Scholar
  34. 34.
    D. He, L. Wang, D. Xu, J. Zhai, D. Wang, T. Xie, ACS Appl. Mater. Interfaces 3, 3167 (2011)CrossRefGoogle Scholar
  35. 35.
    F. Wang, W. Li, S. Gu, H. Li, H. Zhou, X. Wu, RSC Adv. 5, 89940 (2015)CrossRefGoogle Scholar
  36. 36.
    Z. Amouzegar, R. Naghizadeh, H. Rezaie, M. Ghahari, M. Aminzare, Ceram. Int. 41, 1743 (2015)CrossRefGoogle Scholar
  37. 37.
    P. Siriwong, T. Thongtem, A. Phuruangrat, S. Thongtem, Cryst. Eng. Commun. 13, 1564 (2011)CrossRefGoogle Scholar
  38. 38.
    S.R. Ede, A. Ramadoss, U. Nithiyanantham, S. Anantharaj, S. Kundu, Inorg. Chem. 54, 3851 (2015)CrossRefGoogle Scholar
  39. 39.
    Y.X. Zhou, L. Tong, X.B. Chen, X.H. Zeng, Appl. Phys. A 117, 673 (2014)CrossRefGoogle Scholar
  40. 40.
    E.D. Bøjesen, K.M. Jensen, C. Tyrsted, A. Mamakhel, H.L. Andersen, H. Reardon, J. Chevalier, A.C. Dippel, B.B. Iversen, Chem. Sci. 7, 6394 (2016)CrossRefGoogle Scholar
  41. 41.
    S. Komarneni, H. Katsuki, Pure Appl. Chem. 74, 1537 (2002)CrossRefGoogle Scholar
  42. 42.
    P.F.D.S. Pereira, A. Gouveia, M. Assis, R.C. De Oliveira, I. Pinatti, M. Penha, R. Gonçalves, L. Gracia, J. Andrés, E. Longo, Phys. Chem. Chem. Phys. 20, 1923 (2018)CrossRefGoogle Scholar
  43. 43.
    R. Shi, Y. Wang, D. Li, J. Xu, Y. Zhu, Appl. Catalysis B: Environ. 100, 173 (2010)CrossRefGoogle Scholar
  44. 44.
    R.C. Powell, G. Blasse, Energy transfer in concentrated systems, in Luminescence and Energy Transfer. Structure and Bonding, Vol. 42 (Springer, Berlin, Heidelberg, 1980) pp. 43--96Google Scholar
  45. 45.
    M. Mancheva, R. Iordanova, Y. Dimitriev, J. Alloys Compd. 509, 15 (2011)CrossRefGoogle Scholar
  46. 46.
    B. Gao, H. Fan, X. Zhang, L. Song, Mater. Sci. Eng. B 177, 1126 (2012)CrossRefGoogle Scholar
  47. 47.
    L. Wang, Y. Ma, H. Jiang, Q. Wang, C. Ren, X. Kong, J. Shi, J. Wang, J. Mater. Chem. C 2, 4651 (2014)CrossRefGoogle Scholar
  48. 48.
    Y. Keereeta, S. Thongtem, T. Thongtem, Powder Technol. 284, 85 (2015)CrossRefGoogle Scholar
  49. 49.
    X. Wang, B. Li, D. Liu, H. Xiong, Sci. China Chem. 57, 122 (2014)CrossRefGoogle Scholar
  50. 50.
    W.J. Li, Z.W. Fu, Appl. Surf. Sci. 256, 2447 (2010)CrossRefGoogle Scholar
  51. 51.
    X. Zhao, W. Yao, Y. Wu, S. Zhang, H. Yang, Y. Zhu, J. Solid State Chem. 179, 2562 (2006)CrossRefGoogle Scholar
  52. 52.
    A.K. Adepu, V. Katta, V. Narayanan, New J. Chem. 41, 2498 (2017)CrossRefGoogle Scholar
  53. 53.
    S. Patil, H.B. Naik, G. Nagaraju, R. Viswanath, S. Rashmi, Eur. Phys. J. Plus 132, 328 (2017)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Siddaganga Institute of Technology(Affiliated to Visvesvaraya Technological University - Belagavi)TumakuruIndia
  2. 2.Department of Chemistry, School of EngineeringPresidency UniversityBangaloreIndia

Personalised recommendations