Advertisement

Effective medium theory for anisotropic media with plasmonic core-shell nanoparticle inclusions

  • V. Yu. Reshetnyak
  • I. P. Pinkevych
  • T. J. Sluckin
  • A. M. Urbas
  • D. R. Evans
Open Access
Regular Article
  • 28 Downloads

Abstract.

Core-shell building blocks have been found useful in recent years as inclusions, in the search for metamaterials with tailored properties. Either the core or the shell of these composite inclusions may be metallic, and the dielectric component may be both radially anisotropic and radially inhomogeneous. In tunable anisotropic metamaterials, the tuning may then be achieved through the host, the core, or some combination thereof. However a theoretical picture is harder to build. Here we propose an approach to an effective medium theory for such materials, valid in the quasi-static limit. The method proceeds first by homogenising the interior of complex particle, and then uses standard anisotropic effective medium methods to provide bulk effective homogenized parameters. By varying the degree of inhomogeneity in the core, shell and dielectric-metal material volume fractions, the technique can be used as a tool for the design of metamaterials with specifically engineered properties. We find that metamaterial properties can be readily tuned by reorienting the optical axis of the host (e.g., liquid crystal). In particular, there is a possibility of switching between hyperbolic and conventional anisotropic metamaterial properties by changing inclusion shell properties.

References

  1. 1.
    A. Sihvola, Electromagnetic mixing formulas and applications (The Institution of Engineering and Technology, London, UK, 1999)Google Scholar
  2. 2.
    T.C. Choy, Effective medium theory: principles and applications (Clarendon Press, Oxford, UK, 1999)Google Scholar
  3. 3.
    N. Engheta, R.W. Ziolokowski (Editors), Metamaterials: Physics and Engineering Explorations (IEEE Press, Piscataway, N.J., 2006)Google Scholar
  4. 4.
    L. Solymar, E. Shamonina, Waves in Metamaterials (Oxford University Press, Oxford, UK, 2009)Google Scholar
  5. 5.
    W. Cai, V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2010)Google Scholar
  6. 6.
    M.A. Noginov, G. Zhu et al., Nature 460, 1110 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    D. Rodríguez-Fernández, J. Pérez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzán, Chem. Open 1, 90 (2012)Google Scholar
  8. 8.
    I.C. Khoo, D.H. Werner, X. Liang, A. Diaz, B. Weiner, Opt. Lett. 31, 2592 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    D. Rodríguez-Fernández, L.M. Liz-Marzán, Part. Part. Syst. Charact. 30, 46 (2013)CrossRefGoogle Scholar
  10. 10.
    A. Karvounis, B. Gholipour, K.F. MacDonald, N.I. Zheludev, Appl. Phys. Lett. 109, 051103 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Z. Chen, Y. Gao, L. Kang, C. Cao, S. Chen, H. Luo, J. Mater. Chem. A 2, 2718 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Erbe, R. Sigel, Eur. Phys. J. E 22, 303 (2007)CrossRefGoogle Scholar
  13. 13.
    P.A.A. De Beule, J. Opt. Soc. Am. A 31, 162 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    A.B. Golovin, O.D. Lavrentovich, Appl. Phys. Lett. 95, 254104 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    M. Warner, E.M. Terentjev, Liquid Crystal Elastomers (Oxford University Press, Oxford, UK, 2007)Google Scholar
  16. 16.
    L. Ferrari, C. Wu, D. Lepage, X. Zhang, Z. Liu, Progr. Quantum Electron. 40, 1 (2015)CrossRefGoogle Scholar
  17. 17.
    V.P. Drachev, V.A. Podolskiy, A.V. Kildishev, Opt. Express 21, 15048 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    W.R. Tinga, W. Voss, D. Blossey, J. Appl. Phys. 44, 3897 (1973) Table 1 of this paper includes a useful summary of mixture formulae with different ranges of applicabilityADSCrossRefGoogle Scholar
  19. 19.
    S.M. Shelestiuk, V.Y. Reshetnyak, T.J. Sluckin, Phys. Rev. E 83, 041705 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    A. Sihvola, Electromagnetics 17, 269 (1997)CrossRefGoogle Scholar
  21. 21.
    A. Sihvola, Progr. Electromagn. Rese. 51, 65 (2005)CrossRefGoogle Scholar
  22. 22.
    A. Lakhtakia, B. Michel, W.S. Weiglhofer, J. Phys. D 30, 230 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    T.G. Mackay, A. Lakhtakia, Microwave Opt. Technol. Lett. 47, 313 (2005)CrossRefGoogle Scholar
  24. 24.
    T.G. Mackay, A. Lakhtakia, J. Nanophoton. 6, 069501 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, New York, 1983)Google Scholar
  26. 26.
    J.C.M. Garnett, Philos. Trans. R. Soc. A 203, 385 (1904)ADSCrossRefGoogle Scholar
  27. 27.
    D.A.G. Bruggeman, Ann. Phys. (Leipzig) 416, 636 (1935)ADSCrossRefGoogle Scholar
  28. 28.
    R. Landauer, Electrical conductivity in inhomogeneous media, in Proceedings of the 1st Conference on Electrical Transport and Optical Properties of Inhomogeneous Media, Ohio State University, edited by J.C. Garland, D.B. Tanner (AIP, New York, 1977) pp. 2--45Google Scholar
  29. 29.
    A. Ishimaru, Wave propagation and scattering in random media (Academic Press, New York, 1978)CrossRefGoogle Scholar
  30. 30.
    D.J. Bergman, D. Stroud, Sol. State Phys. 46, 147 (1992)CrossRefGoogle Scholar
  31. 31.
    D.J. Bergman, Phys. Rep. 43, 377 (1978)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    T.G. Mackay, A. Lakhtakia, Modern analytical electromagnetic homogenization (Morgan & Claypool Publishers, 2015)Google Scholar
  33. 33.
    V.A. Markel, J. Opt. Soc. Am. A 33, 1244 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    V.A. Markel, J. Opt. Soc. Am. A 33, 2237 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A.M. Funston, C. Novo, P. Mulvaney, L.M. Liz-Marzán, F.J.G. de Abajo, Chem. Soc. Rev. 37, 1792 (2008)CrossRefGoogle Scholar
  36. 36.
    B. Rodríguez-Gonzalez, F. Attouchi, M.F. Cardinal, V. Myroshnychenko, O. Stephan, F.J. Garcia de Abajo, L.M. Liz-Marzan, M. Kociak, Langmuir 28, 9063 (2012)CrossRefGoogle Scholar
  37. 37.
    M.E. Mezeme, S. Lasquellec, C. Brosseau, Phys. Rev. E 81, 057602 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    K.K. Karkkainen, A.H. Sihvola, K.I. Nikoskinen, IEEE Trans. Geosci. Remote Sens. 38, 1303 (2000)ADSCrossRefGoogle Scholar
  39. 39.
  40. 40.
    H. Chen, C.T. Chan, P. Sheng, Nat. Mater. 9, 387 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    S.A. Cummer, B. Popa, D. Schurig, D.R. Smith, J. Pendry, M. Rahm, A. Starr, Phys. Rev. Lett. 100, 024301 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    S. Zhang, C. Xia, N. Fang, Phys. Rev. Lett. 106, 024301 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    S. Guenneau, C. Amra, D. Veynante, Opt. Express 20, 8207 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    I. Abdulhalim, M. Zourob, A. Lakhtakia, Electromagnetics 28, 214 (2008)CrossRefGoogle Scholar
  45. 45.
    I. Abdulhalim, A. Lakhtakia, A. Lahav, F. Zhang, J. Xu, Proc. SPIE 7041, 70410C (2008)ADSCrossRefGoogle Scholar
  46. 46.
    E.D. Palik, Handbook of optical constants of solids (Academic Press, New York, 1998)CrossRefGoogle Scholar
  47. 47.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)ADSCrossRefGoogle Scholar
  48. 48.
    P.G. Etchegoin, E.C.L. Ru, M. Meyer, J. Chem. Phys. 125, 164705 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    E. Coronado, G. Schatz, J. Chem. Phys. 119, 3296 (2003)CrossRefGoogle Scholar
  50. 50.
    W.A. Kraus, G.C. Schatz, J. Chem. Phys. 79, 6130 (1983)ADSCrossRefGoogle Scholar
  51. 51.
    A. Moroz, J. Phys. Chem. C 112, 10641 (2008)CrossRefGoogle Scholar
  52. 52.
    V.Y. Reshetnyak, I.P. Pinkevych, T.J. Sluckin, D.R. Evans, Opt. Express 24, A21 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    S.A. Cummer, B.I. Popa, D. Schurig, D.R. Smith, J. Pendry, Phys. Rev. E 74, 036621 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    W. Cai, U. Chettar, A. Kildishev, V. Shalaev, Nat. Photon. 1, 224 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    A.A. Lucas, L. Henrard, P. Lambin, Phys. Rev. B 49, 2888 (1994)ADSCrossRefGoogle Scholar
  56. 56.
    V.Y. Reshetnyak, T.J. Sluckin, S.J. Cox, J. Phys. D 30, 3253 (1997)ADSCrossRefGoogle Scholar
  57. 57.
    S.J. Cox, V.Y. Reshetnyak, T.J. Sluckin, J. Phys. D 31, 1611 (1998)ADSCrossRefGoogle Scholar
  58. 58.
    A.D. Kiselev, V.Y. Reshetnyak, T.J. Sluckin, Phys. Rev. E 65, 056609 (2002)ADSCrossRefGoogle Scholar
  59. 59.
    H. Kettunen, H. Wallén, A. Sihvola, J. Appl. Phys. 114, 044110 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    U.K. Chettiar, N. Engheta, Opt. Express 20, 22976 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    X. Yu, L. Gao, Phys. Lett. A 359, 516 (2006)ADSCrossRefGoogle Scholar
  62. 62.
    K.-H. Kim, Y.-S. No, S. Chang, J.-H. Choi, H.-G. Park, Sci. Rep. 5, 16027 (2015)ADSCrossRefGoogle Scholar
  63. 63.
    H.N.S. Krishnamoorthy, Y. Zhou, S. Ramanathan, E. Narimanov, V.M. Menon, Appl. Phys. Lett. 104, 121101 (2014)ADSCrossRefGoogle Scholar
  64. 64.
    C.Y.C. Wu, M. Chu, Int. J. Nanomed. 6, 807 (2011)Google Scholar
  65. 65.
    B.J. Jankiewicz, D. Jamiola, J. Choma, M. Jaroniec, Adv. Colloids Interface Sci. 170, 28 (2012)CrossRefGoogle Scholar
  66. 66.
    N. Elbialy, N. Mohamed, A.S. Monem, Micropor. Mesopor. Mater. 190, 197 (2014)CrossRefGoogle Scholar
  67. 67.
    C. Mätzler, MATLAB Functions for Mie Scattering and Absorption, Research Report No. 2002-8 (Oxford, UK, 2002)Google Scholar
  68. 68.
    J.Y. Lu, A. Raza, N.X. Fang, G. Chen, T. Zhang, J. Appl. Phys. 120, 163103 (2016)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Physics FacultyNational Taras Shevchenko University of KyivKyivUkraine
  2. 2.School of Mathematical SciencesUniversity of SouthamptonSouthamptonUK
  3. 3.Air Force Research Laboratory, Materials and Manufacturing DirectorateWright-Patterson Air Force BaseDaytonUSA

Personalised recommendations