Advertisement

Natural convection through spherical particles of a micropolar fluid enclosed in a trapezoidal porous container

  • Mubbashar NazeerEmail author
  • N. Ali
  • Tariq Javed
  • Z. Asghar
Regular Article

Abstract.

The present study discovers the numerical simulations of MHD non-isothermal flow of a micropolar fluid in a porous trapezoidal container under the impact of a constantly heated bottom wall. The top wall of the container is insulated while inclined boundaries have low temperature as compared to the lower boundary. The eminent numerical scheme (FEM) is employed to simulate the nonlinear field equations of the present study. The results are presented in term of streamlines, temperature contours, local and average Nusselt number for diverse values of involved physical parameters. The numerical algorithm is verified against the previously published numerical results. It is observed that the average Nusselt number diminishes with increasing the strength of the applied magnetic field. In contrast, the average Nusselt number increases slightly with enhancing the micro-gyration parameter. The analysis of the present study can be useful in solar engineering for the construction of trapezoidal solar collectors, porous heat exchangers, construction of thermal insulation structures, and geophysical fluid mechanics. The strength of stream function decreases and heat transfer phenomenon inside the cavity becomes conduction dominated with increasing the micropolar parameter.

References

  1. 1.
    T. Basak, S. Roy, A.R. Balakrishnan, Int. J. Heat Mass Transfer 49, 4525 (2006)CrossRefGoogle Scholar
  2. 2.
    T. Basak, S. Roy, I. Pop, Int. J. Heat Mass Transfer 52, 2471 (2009)CrossRefGoogle Scholar
  3. 3.
    T. Basak, S. Roy, S.K. Singh, I. Pop, Int. J. Heat Mass Transfer 52, 4135 (2009)CrossRefGoogle Scholar
  4. 4.
    T. Basak, S. Roy, A. Singh, I. Pop, Int. J. Heat Mass Transfer 52, 70 (2009)CrossRefGoogle Scholar
  5. 5.
    T. Basak, S. Roy, A. Singh, B.D. Pandey, Int. J. Heat Mass Transfer 52, 4413 (2009)CrossRefGoogle Scholar
  6. 6.
    A.C. Eringen, Int. J. Eng. Sci. 2, 205 (1964)CrossRefGoogle Scholar
  7. 7.
    A.C. Eringen, J. Appl. Math. Mech. 16, 1 (1966)Google Scholar
  8. 8.
    A.C. Eringen, J. Math. Anal. Appl. 38, 480 (1972)CrossRefGoogle Scholar
  9. 9.
    G. Łukaszewicz, Micropolar Fluids: Theory and Application (Birkhäuser, Basel, 1999)Google Scholar
  10. 10.
    A.C. Eringen, Microcontinuum Field Theories, Vols. I, II (Springer, New York, 2001)Google Scholar
  11. 11.
    T. Ariman, M.A. Turk, N.D. Sylvester, Int. J. Eng. Sci. 11, 905 (1973)CrossRefGoogle Scholar
  12. 12.
    T. Ariman, M.A. Turk, N.D. Sylvester, Int. J. Eng. Sci. 12, 273 (1974)CrossRefGoogle Scholar
  13. 13.
    M. Turkyilmazoglu, Int. J. Heat Mass Transfer 106, 127 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Turkyilmazoglu, Int. J. Heat Mass Transfer 72, 388 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Turkyilmazoglu, Int. J. Non-Linear Mech. 83, 59 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    N.S. Gibanov, M.A. Sheremet, I. Pop, Int. J. Heat Mass Transfer 99, 831 (2016)CrossRefGoogle Scholar
  17. 17.
    M.A. Sheremet, I. Pop, A. Ishak, Int. J. Heat Mass Transfer 105, 610 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Sheremet, T. Grosan, I. Pop, Int. J. Numer. Methods Heat Fluid Flow 27, 504 (2017)CrossRefGoogle Scholar
  19. 19.
    I.V. Miroshnichenko, M.A. Sheremet, I. Pop, Int. J. Mech. Sci. 120, 182 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Zadravec, M. Hribersek, L. Skerget, Eng. Anal. Bound. Elem. 33, 485 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    S.E. Ahmed, M.A. Mansour, A.K. Hussein, S. Sivasankaran, Eng. Sci. Technol. Int. J. 19, 364 (2016)CrossRefGoogle Scholar
  22. 22.
    T. Javed, M.A. Siddiqui, J. Mol. Liq. 249, 831 (2018)CrossRefGoogle Scholar
  23. 23.
    M. Nazeer, N. Ali, T. Javed, Can. J. Phys. 96, 576 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    N. Ali, M. Nazeer, T. Javed, M.A. Siddiqui, Heat Transf. Res. 49, 457 (2018)CrossRefGoogle Scholar
  25. 25.
    F.M., White, Fluid Mechanics (WCB/McGraw-Hill, Boston, MA, 1999)Google Scholar
  26. 26.
    T. Basak, S. Roy, S.K. Singh, I. Pop, Int. J. Heat Mass Transfer 52, 4135 (2009)CrossRefGoogle Scholar
  27. 27.
    T. Basak, R.S. Kaluri, A.R. Balakrishnan, Numer. Heat Transf. A 59, 372 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    M. Nazeer, N. Ali, T. Javed, Can. J. Phys.  https://doi.org/10.1139/cjp-2017-0904
  29. 29.
    M. Nazeer, N. Ali, T. Javed, Int. J. Numer. Methods Heat Fluid Flow,  https://doi.org/10.1108/HFF-10-2017-0424 (2018)
  30. 30.
    N. Ali, F. Nazeer, M. Nazeer, Z. Naturforsch. A 73, 265 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    J.N. Reddy, An Introduction to the Finite Element Method (McGraw Hill, New York, 1993)Google Scholar
  32. 32.
    N. Ali, Z. Asghar, O. Anwar Bég, M. Sajid, J. Theor. Biol. 397, 22 (2016)CrossRefGoogle Scholar
  33. 33.
    T. Javed, Z. Mehmood, M.A. Siddiqui, J. Braz. Soc. Mech. Sci. Eng. 39, 3897 (2017)CrossRefGoogle Scholar
  34. 34.
    M. Nazeer, N. Ali, T. Javed, F. Abbas, Meccanica 53, 3279 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mubbashar Nazeer
    • 1
    Email author
  • N. Ali
    • 1
  • Tariq Javed
    • 1
  • Z. Asghar
    • 1
  1. 1.Department of Mathematics and StatisticsInternational Islamic UniversityIslamabadPakistan

Personalised recommendations