Mathematical foundation of the neutron diffusion problem for a reflected nuclear reactor

  • N. ChentreEmail author
  • P. Saracco
  • S. Dulla
  • P. Ravetto
Regular Article


The analytical approach to the neutron kinetics of a reflected multiplying system constitutes a challenging problem in mathematical physics and provides useful results for a full physical understanding of the multiplication process in non-homogeneous media, opening the possibility to establish reliable benchmarks. In this work, the basic mathematical features of the neutron diffusion operator in a reflected configuration are investigated. The completeness of the eigenstates is discussed and proven. The case of the infinite reflector is taken into consideration, highlighting its peculiarities that lead to the appearance of a continuum spectrum. The limitation of the critical eigenfunctions is also discussed. The analysis is carried out at first disregarding the presence of delayed emissions. The work is then extended to include also in the model the presence of delayed neutron precursors.


  1. 1.
    S.E. Corno, R. Guandalini, S. Nardi, Rend. Semin. Mat. Univ. Politec. Torino 32, 435 (1974)Google Scholar
  2. 2.
    E.T. Rumble, W.E. Kastenberg, Nucl. Sci. Eng. 49, 172 (1972)CrossRefGoogle Scholar
  3. 3.
    E. Garelis, Nukleonik 9, 187 (1967)Google Scholar
  4. 4.
    Y. Asahi, J. Nucl. Sci. Technol. 12, 92 (1975)MathSciNetCrossRefGoogle Scholar
  5. 5.
    S.E. Corno, P. Ravetto, A Rigorous Analytical Solution to One-Group Diffusion Equations for the Reflected Reactor Dynamics, Report PT IN-FR 93 (Politecnico di Torino, 1976)Google Scholar
  6. 6.
    S.E. Corno, S. Dulla, P. Picca, P. Ravetto, Prog. Nucl. Energy 50, 847 (2008)CrossRefGoogle Scholar
  7. 7.
    J.J. Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis (John Wiley & Sons, Inc., New York, 1976)Google Scholar
  8. 8.
    E. Butkov, Mathematical Physics (Addison Wesley Publishing Company, Reading MA, 1968)Google Scholar
  9. 9.
    R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. I (Interscience Publishers, New York, 1953)Google Scholar
  10. 10.
    B. Montagnini, Lezioni di fisica del reattore (Università di Pisa, 1980)Google Scholar
  11. 11.
    M. Stone, P. Golbart, Mathematics for Physics (Cambridge University Press, New York, 2009)Google Scholar
  12. 12.
    F. Riesz, B.S. Nagy, Functional Analysis (Ungar, New York, 1955)Google Scholar
  13. 13.
    B. Friedmann, Principles and Techniques of Applied Mathematics (Wiley, New York, 1958)Google Scholar
  14. 14.
    H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959)Google Scholar
  15. 15.
    Z. Akcasu, G.S. Lellouche, L.M. Shotkin, Mathematical Methods in Nuclear Reactor Dynamics (Academic Press, New York, 1971)Google Scholar
  16. 16.
    T. Kato, Perturbation Theory for Linear Operators (Springer Verlag, Berlin, 1995)Google Scholar
  17. 17.
    G.I. Bell, S. Glasstone, Nuclear Reactor Theory (Van Nostrand Reinhold Company, New York, 1970)Google Scholar
  18. 18.
    N. Chentre, The Spectrum of the Neutron Diffusion Operator for Reflected Reactors (Master’s Thesis, Politecnico di Torino, 2017)Google Scholar
  19. 19.
    I.M. Gelfand, S.V. Fomin, Calculus of Variations (Prentice-Hall Inc., Englewood Cliffs, NJ, 1963)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.INFNGenovaItaly
  2. 2.Politecnico di TorinoDipartimento di EnergeticaTorinoItaly
  3. 3.INFNTorinoItaly

Personalised recommendations