Advertisement

Energy spectra and the expectation values of diatomic molecules confined by the shifted Deng-Fan potential

  • O. J. OluwadareEmail author
  • K. J. Oyewumi
Regular Article
  • 14 Downloads

Abstract.

The approximate bound state solutions of the Schrödinger equation with the shifted Deng-Fan potential was obtained via a proper quantization rule. The energy spectra for the homogenous diatomic molecules (H2, I2); the heterogeneous diatomic molecules (CO, HCl, LiH); the neutral transition metal hydrides (ScH, TiH, VH, CrH); the transition-metal lithide (CuLi); the transition-metal carbides (TiC, NiC); the transition metal nitrite (ScN) and the transition metal fluoride (ScF) were calculated. By applying the Hellmann-Feynman theorem, the expression for the expectation values of the square of inverse of position r-2, potential energy V, kinetic energy T and the square of momentum p2 were derived and the numerical values for diatomic molecules were presented. The result is reliable and very consistent with the available ones in the literature.

References

  1. 1.
    A.A. Zevitsas, J. Am. Chem. Soc. 113, 4755 (1991)CrossRefGoogle Scholar
  2. 2.
    P.G. Hajigeorgiou, J. Mol. Spectrosc. 263, 101 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    G. Herzberg, Molecular Spectra and Structure I: Spectra of Diatomic Molecules (Van Nostrand, New York, 1950)Google Scholar
  4. 4.
    P.A. Fraser, W.R. Jarmain, Proc. Phys. Soc. 66, 114 (1953)CrossRefGoogle Scholar
  5. 5.
    Y.P. Varshni, Rev. Mod. Phys. 31, 839 (1959)ADSCrossRefGoogle Scholar
  6. 6.
    J.F. Harrison, Chem. Rev. 100, 679 (2000)CrossRefGoogle Scholar
  7. 7.
    Z. Rong, H.G. Kjaergaard, M.L. Sage, Mol. Phys. 101, 2285 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    A.T. Royappa, V. Suri, J.R. McDonough, J. Mol. Struct. 787, 209 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    S.H. Dong, Factorization Method in Quantum Mechanics, Fundamental Theories in Physics, Vol. 150 (Springer, Netherlands, 2007)Google Scholar
  10. 10.
    Y.P. Varshni, Chem. Phys. 353, 32 (2008)CrossRefGoogle Scholar
  11. 11.
    K.J. Oyewumi, K.D. Sen, J. Math. 50, 1039 (2012)Google Scholar
  12. 12.
    K.J. Oyewumi, O.J. Oluwadare, K.D. Sen, O.A. Babalola, J. Math. Chem. 51, 976 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    S.M. Ikhdair, B.J. Falaye, Chem. Phys. 421, 84 (2013)CrossRefGoogle Scholar
  14. 14.
    C.A. Onate, Chin. J. Phys. 54, 165 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Hamzavi, S.M. Ikhdair, K.E. Thylwe, J. Math. Chem. 51, 227 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    K.J. Oyewumi, B.J. Falaye, C.A. Onate, O.J. Oluwadare, W.A. Yahya, Mol. Phys. 112, 127 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    W.C. Qiang, S.H. Dong, EPL 89, 10003 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    S.H. Dong, Wave Equation in Higher Dimensions (Springer, Netherland, 2011) p. 136Google Scholar
  19. 19.
    Z.Q. Ma, B.W. Xu, Int. J. Mod. Phys. E 14, 599 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Z.Q. Ma, B.W. Xu, Europhys. Lett. 69, 685 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    C.N. Yang, Monopoles in Quantum Field Theory, Proceedings of the Monopole Meeting, Trieste, Italy, edited by N.S. Craigie, P. Goddard, W. Nahm (World Scientific, Singapore, 1982) p. 237Google Scholar
  22. 22.
    W.C. Qiang, S.H. Dong, Phys. Lett. A 363, 169 (2007)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    S.H. Dong, D. Morales, J. Garcia-Ravelo, Int. J. Mod. Phys. E 16, 189 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    X.Y. Gu, S.H. Dong, Z.Q. Ma, J. Phys. A: Math Theor. 42, 035303 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    X.Y. Gu, S.H. Dong, J. Math. Chem. 49, 2053 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    S.H. Dong, M.C. Irisson, J. Math. Chem. 50, 881 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    F.A. Serrano, X.Y. Gu, S.H. Dong, J. Math. Phys. 51, 082103 (2010)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    F.A. Serrano, M.C. Irisson, S.H. Dong, Ann. Phys. 523, 771 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    O.J. Oluwadare, K.J. Oyewumi, Chin. Phys. Lett. 34, 110301 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    R.L. Greene, C. Aldrich, Phys. Rev. A 143, 2363 (1976)ADSCrossRefGoogle Scholar
  31. 31.
    S.H. Dong, X.Y. Gu, J. Phys.: Conf. Ser. 96, 012109 (2008)Google Scholar
  32. 32.
    G.F. Wei, C.Y. Long, S.H. Dong, Phys. Lett. A 372, 2592 (2008)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    G.F. Wei, C.Y. Long, X.Y. Duan, S.H. Dong, Phys. Scr. 78, 035001 (2008)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    K.J. Oyewumi, O.J. Oluwadare, Adv. High Energy Phys. 2017, 1634717 (2017)CrossRefGoogle Scholar
  35. 35.
    G. Hellmann, Einführung in die Quantenchemie (Denticke, Vienna, 1937)Google Scholar
  36. 36.
    R.P. Feynman, Phys. Rev. 56, 340 (1939)ADSCrossRefGoogle Scholar
  37. 37.
    G. Marc, W.G. McMillan, Adv. Chem. Phys. 58, 209 (1985)Google Scholar
  38. 38.
    D. Popov, Int. J. Quantum. Chem. 69, 159 (1998)CrossRefGoogle Scholar
  39. 39.
    D. Popov, Czech. J. Phys. 49, 1121 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    D. Popov, J. Phys. A: Math. Gen. 34, 5283 (2001)ADSGoogle Scholar
  41. 41.
    M.E. Grypeos, C.G. Koutroulos, K.J. Oyewumi, Th.A. Petridou, J. Phys. A: Math. Gen. 37, 7895 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    K.J. Oyewumi, Th.A. Petridou, M.E. Grypeos, C.G. Koutroulos, Proceedings of the 3rd International Workshop on Contemporary Problems in Mathematical Physics, COPROMAPH 3 1--7 Nov. 2003, edited by J. Govaerts, M.N. Hounkonnu, A.Z. Msezane (World Scientific, New Jersey-London, 2004) p. 336Google Scholar
  43. 43.
    K.J. Oyewumi, Found. Phys. Lett. 18, 75 (2005)CrossRefGoogle Scholar
  44. 44.
    K.J. Oyewumi, Proceedings of the Fifth International Workshop on Contemporary Problems in Mathematical Physics, COPROMAPH 5, 27 Oct.--2 Nov. 2007, Cotonou, Benin Republic, edited by J. Govaerts, M.N. Hounkonnu, (ICMPA-UNESCO Chair, University of Abomey-Calavi, 2008) p. 193Google Scholar
  45. 45.
    D.B. Wallace, An Introduction to Hellmann-Feynman Theory, M. Sc. Thesis, University of Central Florida, USA (2005)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsFederal University Oye-EkitiEkiti StateNigeria
  2. 2.Theoretical Physics Section, Department of PhysicsUniversity of IlorinIlorinNigeria

Personalised recommendations