The Dirichlet Casimir energy for the \( \phi^{4}\) theory in a rectangle

  • M. A. ValuyanEmail author
Regular Article


In this article, we present the zero- and first-order radiative correction to the Dirichlet Casimir energy for massive and massless scalar field confined in a rectangle. This calculation procedure was conducted in two spatial dimensions and for the case of the first-order correction term this procedure is new. The renormalization program that we have used in this work allows all influences from the dominant boundary conditions (e.g. the Dirichlet boundary condition) to be automatically reflected in the counterterms. This permission usually makes the counterterms position-dependent. Along with the renormalization program, a supplementary regularization technique was performed in this work. In this regularization technique, that we have named Box Subtraction Scheme (BSS), two similar configurations were introduced and the zero point energies of these two configurations were subtracted from each other using appropriate limits. This regularization procedure makes the use of any analytic continuation techniques unnecessary. In the present work, first, we briefly present the calculation of the leading-order Casimir energy for the massive scalar field in a rectangle via BSS. Next, the first-order correction to the Casimir energy is calculated by applying the mentioned renormalization and regularization procedures. Finally, all the necessary limits of the obtained answers for both massive and massless cases are discussed.


  1. 1.
    H.B.G. Casimir, Proc. Kon. Nederl. Akad. Wet. 51, 793 (1948)Google Scholar
  2. 2.
    M.J. Sparnaay, Physica 24, 751 (1958)ADSCrossRefGoogle Scholar
  3. 3.
    K.A. Milton, The Casimir Effect: Physical Manifestations of Zero-Point Energy (World Scientific Publishing Co., 2001)Google Scholar
  4. 4.
    M.A. Valuyan, Int. J. Geo. Meth. Mod. Phys. 15, 1850172 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    N.R. Khusnutdinov, R.N. Kashapov, Theor. Math. Phys. 183, 491 (2015)CrossRefGoogle Scholar
  6. 6.
    L. Rosa, S. Avino, E. Calloni, S. Caprara, M. De Laurentis, R. De Rosa, Giampiero Esposito, M. Grilli, E. Majorana, G.P. Pepe, S. Petrarca, P. Puppo, P. Rapagnani, F. Ricci, C. Rovelli, P. Ruggi, N.L. Saini, C. Stornaiolo, F. Tafuri, Eur. Phys. J. Plus 132, 478 (2017)CrossRefGoogle Scholar
  7. 7.
    A. Edery, Phys. Rev. D 75, 105012 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    M.A. Braun, Theor. Math. Phys. 175, 771 (2013)CrossRefGoogle Scholar
  9. 9.
    G. Mahajan, S. Sarkar, T. Padmanabhan, Phys. Lett. B 641, 6 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    A. Romeo, K.A. Milton, Phys. Lett. B 621, 309 (2005)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Bordag, D. Robaschik, E. Wieczorek, Ann. Phys. (N.Y.) 165, 192 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    M. Bordag, J. Lindig, Phys. Rev. D 58, 045003 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    M. Bordag, K. Scharnhorst, Phys. Rev. Lett. 81, 3815 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    L.C. de Albuquerque, Phys. Rev. D 55, 7754 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    M. Bordag, U. Mohideen, V.M. Mostepanenko, Phys. Rep. 353, 1 (2001)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    F.A. Baron, R.M. Cavalcanti, C. Farina, Nucl. Phys. B (Proc. Suppl.) 127, 118 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    F.A. Baron, R.M. Cavalcanti, C. Farina, arXiv:hep-th/0312169 (2003)Google Scholar
  18. 18.
    N. Graham, R. Jaffe, Weigel, Int. J. Mod. Phys. A 17, 864 (2002)CrossRefGoogle Scholar
  19. 19.
    N. Graham, R.L. Jaffe, V. Khemani, M. Quandt, O. Schroeder, H. Weigel, Nucl. Phys. B 677, 379 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    R. Moazzemi, M. Namdar, S.S. Gousheh, JHEP 09, 029 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    R. Moazzemi, A. Mohammadi, S.S. Gousheh, Eur. Phys. J. C 56, 585 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    R. Moazzemi, S.S. Gousheh, Phys. Lett. B 658, 255 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    A. Romeo, K.A. Milton, Phys. Lett. B 621, 309 (2005)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    K.A. Milton, A.V. Nesterenko, V.V. Nesterenko, Phys. Rev. D 59, 105009 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    I.H. Brevik, V.V. Nesterenko, I.G. Pirozhenko, J. Phys. A 31, 8661 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    K.A. Milton, L.L. Deraad, J. Schwinger, Ann. Phys. (N.Y.) 115, 388 (1978)ADSCrossRefGoogle Scholar
  27. 27.
    J. Baacke, Y. Igarashi, Phys. Rev. D 27, 460 (1983)ADSCrossRefGoogle Scholar
  28. 28.
    J. Schwinger, L.L. de Raad Jr., K.A. Milton, Ann. Phys. 115, 1 (1978)ADSCrossRefGoogle Scholar
  29. 29.
    J. Schwinger, Lett. Math. Phys. 1, 43 (1975)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    K.A. Milton, L.L. de Raad Jr., J. Schwinger, Ann. Phys. 115, 388 (1978)ADSCrossRefGoogle Scholar
  31. 31.
    M.A. Valuyan, S.S. Gousheh, Int. J. Mod. Phys. A 25, 1165 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    R. Saghian, M.A. Valuyan, A. Seyedzahedi, S.S. Gousheh, Int. J. Mod. Phys. A 27, 1250038 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    T.H. Boyer, Phys. Rev. 174, 1764 (1968)ADSCrossRefGoogle Scholar
  34. 34.
    S.S. Gousheh, R. Moazzemi, M.A. Valuyan, Phys. Lett. B 681, 477 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    M.A. Valuyan, Mod. Phys. Lett. A 32, 1750128 (2017)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    M.A. Valuyan, Can. J. Phys. 96, 1004 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    M. Mohammadian, Eur. Phys. J. Plus 132, 169 (2017)CrossRefGoogle Scholar
  38. 38.
    H. Sabri, B. Rashidian Maleki, H. Fathi, M.A. Jafarizadeh, Eur. Phys. J. Plus 129, 52 (2014)CrossRefGoogle Scholar
  39. 39.
    E. Marsch, Eur. Phys. J. Plus 132, 188 (2017)CrossRefGoogle Scholar
  40. 40.
    M.A. Valuyan, R. Moazzemi, S.S. Gousheh, J. Phys. B: At. Mol. Opt. Phys. 41, 145502 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    M.A. Valuyan, J. Phys. G: Nucl. Part. Phys. 45, 095006 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    W. Lukosz, Physica 56, 109 (1971)ADSCrossRefGoogle Scholar
  43. 43.
    J. Ambjørn, S. Wolfram, Ann. Phys. (N.Y.) 147, 1 (1983)ADSCrossRefGoogle Scholar
  44. 44.
    E.K. Abalo, K.A. Milton, L. Kaplan, Phys. Rev. D 82, 125007 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    A.A. Saharian, The Genetalized Abel-Plana Formula: Applications To Bessel Functions and Casimir Effect, IC/2007/082, arXiv:hep-th/0002239v1 (2000)Google Scholar
  46. 46.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison Wesley, 1995)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Semnan BranchIslamic Azad UniversitySemnanIran

Personalised recommendations