A comprehensive numerical study of space-time fractional bioheat equation using fractional-order Legendre functions

  • R. Roohi
  • M. H. HeydariEmail author
  • M. Aslami
  • M. R. Mahmoudi
Regular Article


The determination of a temperature field within the living tissues and especially during the thermal therapies requires a comprehensive modeling due to the involved complex heat transfer mechanisms. Anomalous structure of the blood vessels, history-dependent heat transfer, temperature-dependent metabolic heat generation and various types of available thermal therapy procedures are some of the difficulties arising for a realistic modeling. To tackle the mentioned problem, in the present investigation the general form of the space-time fractional heat conduction equation with locally variable initial condition and time-dependent boundary conditions is solved. Moreover, the heat generation source term is assumed to be a function of both time and space. A computational method based on the fractional-order Legendre functions (F-OLFs) and Galerkin method is proposed to solve the problem. The main advantage of the proposed method is that it obtains a global solution for the problem. In addition, the method reduces the problem under consideration to a simpler problem that consists of solving a system of nonlinear algebraic equations. The developed mathematical method is applied to three common clinical thermal therapies: instantaneous and gradual internal magnetic heat generation and skin laser exposure. The effect of various physiological and clinical parameters is investigated. According to the obtained results, the temperature field is a strong function of the time and space fractional order. Additionally, it is shown that the instantaneous heat source which is commonly utilized in the literature leads to substantial different results in comparison to the more realistic case of gradually increasing heat generation.


  1. 1.
    D. Sierociuk, A. Dzielinski, G. Sarwas, I. Petras, I. Podlubny, T. Skovranek, Philos. Trans. R. Soc. 371, 20120146 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    A. Dzielinski, D. Sierociuk, G. Sarwas, Bull. Pol. Acad. Sci. Tech. Sci. 58, 583 (2010)Google Scholar
  3. 3.
    K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, 1974)Google Scholar
  4. 4.
    E. Hesameddini, A. Rahimi, E. Asadollahifard, Commun. Nonlinear Sci. Numer. Simul. 34, 154 (2016)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Saadatmandi, M. Dehghan, Comput. Math. Appl. 59, 1326 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, Appl. Math. Model. 36, 4931 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, Comput. Math. Appl. 62, 2364 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Kazem, Abbasbandy, S. Kumar, Appl. Math. Model. 37, 5498 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Ahmadian, M. Suleiman, S. Salahshour, Abstr. Appl. Anal. 2013, 505903 (2013)Google Scholar
  10. 10.
    D. Baleanu, A.H. Bhrawy, T.M. Taha, Abstr. Appl. Anal. 2013, 546502 (2013)Google Scholar
  11. 11.
    M. Ishteva, L. Boyadjiev, C. R. Acad. Bulg. Sci. 58, 1019 (2005)Google Scholar
  12. 12.
    M. Ishteva, L. Boyadjiev, R. Scherer, Math. Sci. Res. 9, 161 (2005)MathSciNetGoogle Scholar
  13. 13.
    M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, Comput. Math. Appl. 68, 269 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    M.H. Heydari, M.R. Hooshmandasl, F. Mohammadi, Appl. Math. Comput. 234, 267 (2014)MathSciNetGoogle Scholar
  15. 15.
    M.H. Heydari, M.R. Hooshmandasl, F. Mohammadi, Adv. Appl. Math. Mech. 6, 247 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, C. Cattani, Phys. Lett. A 379, 71 (2015)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, C. Cattani, Appl. Math. Comput. 286, 139 (2016)MathSciNetGoogle Scholar
  18. 18.
    M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, M. Li, Adv. Math. Phys. 2013, 482083 (2013)CrossRefGoogle Scholar
  19. 19.
    M.H. Heydari, M.R. Hooshmandasl, A. Shakiba, C. Cattani, Tbilisi Math. J. 9, 143 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    M.H. Heydari, Z. Avazzadeh, Asian J. Control 20, 1 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    M.H. Heydari, Z. Avazzadeh, Comput. Appl. Math. (2018)
  22. 22.
    S. Hassanpour, A. Saboonchi, J. Therm. Biol. B 62, 150 (2016)CrossRefGoogle Scholar
  23. 23.
    N. Afrin, Y. Zhang, J.K. Chen, Int. J. Heat Mass Transfer 54, 2419 (2011)CrossRefGoogle Scholar
  24. 24.
    R.S. Damor, S. Kumar, A.K. Shukla, Springer Plus 5, 111 (2016)CrossRefGoogle Scholar
  25. 25.
    L.L. Ferras, N.J. Ford, M.L. Morgado, J.M. Nobrega, M.S. Rebelo, Fractional Calculus Appl. Anal. 18, 1080 (2015)MathSciNetGoogle Scholar
  26. 26.
    F.K. Nakayama, Int. J. Heat Mass Transfer 51, 3190 (2008)CrossRefGoogle Scholar
  27. 27.
    Z. Cui, G. Chen, R. Zhang, Adv. Mater. Res. 1049-1050, 1471 (2012)CrossRefGoogle Scholar
  28. 28.
    H.R. Ghazizadeh, M. Maerefat, A. Azimi, Modeling non-Fourier behavior of bioheat transfer by fractional single-phase-lag heat conduction constitutive model, in Proceedings of the 4th IFAC Workshop on Fractional Differentiation and its Applications, University of Extremadura Badajoz, Spain, 2010Google Scholar
  29. 29.
    Y. Zhang, Appl. Math. Comput. 215, 524 (2009)MathSciNetGoogle Scholar
  30. 30.
    J. Singh, P.K. Gupta, K.N. Rai, Math. Comput. Modell. 54, 2316 (2011)CrossRefGoogle Scholar
  31. 31.
    X. Jiang, H. Qi, J. Phis. A 45, 485 (2012)Google Scholar
  32. 32.
    X.Y. Jiang, M.Y. Xu, Physica A 389, 3368 (2010)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    X.H. Ying, J.X. Yun, Chin. Phys. B 24, 340 (2015)Google Scholar
  34. 34.
    H. Askarizadeh, H. Ahmadikia, Heat Mass Transf. 50, 1673 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    M.A. Ezzat, N.S. Al Sowayan, Z.I.A. Al-Muhiameed, S.M. Ezzat, Heat Mass Transf. 50, 907 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    D. Kumar, K.N. Rai, J. Therm. Biol. 67, 49 (2017)CrossRefGoogle Scholar
  37. 37.
    I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)Google Scholar
  38. 38.
    S. Kazem, S. Abbasbandy, Sunil Kumar, Appl. Math. Modell. 37, 5498 (2013)CrossRefGoogle Scholar
  39. 39.
    M.R. Hooshmandasl, M.H. Heydari, C. Cattani, Eur. Phys. J. Plus 131, 268 (2016)CrossRefGoogle Scholar
  40. 40.
    C. Canuto, M. Hussaini, A. Quarteroni, T. Zang, Spectral Methods in Fluid Dynamics (Springer, 1988)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • R. Roohi
    • 1
  • M. H. Heydari
    • 2
    Email author
  • M. Aslami
    • 3
  • M. R. Mahmoudi
    • 4
  1. 1.Department of Mechanical EngineeringFasa UniversityFasaIran
  2. 2.Department of MathematicsShiraz University of TechnologyShirazIran
  3. 3.Department of Civil EngineeringFasa UniversityFasaIran
  4. 4.Department of StatisticsFasa UniversityFasaIran

Personalised recommendations