Advertisement

Vortex and multipole soliton modes in the (2 + 1)-dimensional cubic-quintic-septimal nonlinear media with the spatially modulated distributions

  • Yi-Xiang ChenEmail author
Regular Article
  • 41 Downloads

Abstract.

A (2 + 1)-dimensional cubic-quintic-septimal nonlinear Schrödinger equation with the spatially modulated distributions is investigated. When it is linked to the stationary cubic-quintic-septimal nonlinear Schrödinger equation, constraint conditions exist connecting inhomogeneous cubic, quintic and septimal nonlinearities and the amplitude of soliton mode. Under these conditions, analytical vortex and multipole soliton mode solutions are derived. If the value of the modulation depth is set as 1 and 0, vortex and multipole soliton modes are formed respectively. If the value of the soliton order number n grows, the layer structures of vortex and multipole soliton modes are added and are determined by the value of n. The stability of multipole and vortex soliton modes is tested by direct simulations with initial white noise.

References

  1. 1.
    L.H. Wang, J.T. Li, S.F. Li, Q.T. Liu, Eur. Phys. J. Plus 131, 211 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    H.Y. Wu, L.H. Jiang, Eur. Phys. J. Plus 133, 124 (2018)CrossRefGoogle Scholar
  3. 3.
    D.J. Ding, D.Q. Jin, C.Q. Dai, Therm. Sci. 21, 1701 (2017)CrossRefGoogle Scholar
  4. 4.
    Y.Y. Wang, Y.P. Zhang, C.Q. Dai, Nonlinear Dyn. 83, 1331 (2016)CrossRefGoogle Scholar
  5. 5.
    C.Q. Dai, S.Q. Zhu, L.L. Wang, J.F. Zhang, EPL 92, 24005 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Y.Y. Wang, C.Q. Dai, Y.Q. Xu, J. Zheng, Y. Fan, Nonlinear Dyn. 92, 1261 (2018)CrossRefGoogle Scholar
  7. 7.
    Y.Y. Wang, L. Chen, C.Q. Dai, J. Zheng, Y. Fan, Nonlinear Dyn. 90, 1269 (2017)CrossRefGoogle Scholar
  8. 8.
    J.T. Li, Y. Zhu, Q.T. Liu, J.Z. Han, Y.Y. Wang, C.Q. Dai, Nonlinear Dyn. 85, 973 (2016)CrossRefGoogle Scholar
  9. 9.
    C.Q. Dai, Y.Y. Wang, J.F. Zhang, Opt. Express 18, 17548 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    R.P. Chen, C.Q. Dai, Nonlinear Dyn. 90, 1563 (2017)CrossRefGoogle Scholar
  11. 11.
    C.Q. Dai, Y.Y. Wang, Y. Fan, D.G. Yu, Nonlinear Dyn. 92, 1351 (2018)CrossRefGoogle Scholar
  12. 12.
    Y. Zhu, W. Qin, J.T. Li, J.Z. Han, Y.Y. Wang, C.Q. Dai, Nonlinear Dyn. 88, 1883 (2017)CrossRefGoogle Scholar
  13. 13.
    Q. Tian, L. Wu , Y.H. Zhang, J.F. Zhang, Phys. Rev. E 85, 056603 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    K.J.H. Law, P.G. Kevrekidis, Laurette S. Tuckerman, Phys. Rev. Lett. 105, 160405 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    D.I. Pusharov, S. Tanev, Opt. Commun. 124, 354 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    A.S. Reyna, B.A. Malomed, C.B. de Araújo, Phys. Rev. A 92, 033810 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    A.S. Reyna, C.B. de Araújo, Opt. Express 22, 22456 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    H.Y. Wu, L.H. Jiang, Y.F. Wu, Nonlinear Dyn. 87, 1667 (2017)CrossRefGoogle Scholar
  19. 19.
    C.Q. Dai, R.P. Chen, Y.Y. Wang, Y. Fan, Nonlinear Dyn. 87, 1675 (2017)CrossRefGoogle Scholar
  20. 20.
    H.P. Zhu, Z.H. Pan, Nonlinear Dyn. 89, 1745 (2017)CrossRefGoogle Scholar
  21. 21.
    Y.X. Chen, F.Q. Xu, Y.L. Hu, Nonlinear Dyn. 90, 1115 (2017)CrossRefGoogle Scholar
  22. 22.
    L.Q. Kong, C.Q. Dai, Nonlinear Dyn. 81, 1553 (2015)CrossRefGoogle Scholar
  23. 23.
    Y.Y. Wang, Y.P. Zhang, C.Q. Dai, Nonlinear Dyn. 83, 1331 (2016)CrossRefGoogle Scholar
  24. 24.
    Y.Y. Wang, C.Q. Dai, Appl. Math. Model. 40, 3475 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    W.P. Zhong, M. Belic, G. Assanto, B.A. Malomed, T. Huang, Phys. Rev. A 84, 043801 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    J. Belmonte-Beitia, V.M. Perez-Garcia, V. Vekslerchik, V.V. Konotop, Phys. Rev. Lett. 100, 164102 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    E.T. Whittaker, G.N. Watson, A Course in Modern Analysis, 4th edition (Cambridge University Press, Cambridge, 1990)Google Scholar
  28. 28.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972)Google Scholar
  29. 29.
    L. Gagnon, P. Winternitz, J. Phys. A: Math. Gen. 21, 1493 (1988)ADSCrossRefGoogle Scholar
  30. 30.
    S.L. Xu, N. Petrović, Milivoj R. Belić, Nonlinear Dyn. 80, 583 (2015)CrossRefGoogle Scholar
  31. 31.
    R. Killip, T. Oh, O. Pocovnicu, M. Visan, Arch. Ration. Mech. Anal. 225, 469 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    C.Q. Dai, D.S. Wang, L.L. Wang, J.F. Zhang, W.M. Liu, Ann. Phys. 326, 2356 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronics InformationZhejiang University of Media and CommunicationsHangzhouChina

Personalised recommendations