Advertisement

A mathematical analysis of a circular pipe in rate type fluid via Hankel transform

  • Kashif Ali Abro
  • Ilyas Khan
  • J. F. Gómez-AguilarEmail author
Regular Article

Abstract.

In this paper, helices of a generalized Oldroyd-B fluid have been analyzed through a horizontal circular pipe. The circular pipe is taken in the form of a circular cylinder. The analytical solutions are determined for velocities and shear stresses due to the unsteady helical flow of a generalized Oldroyd-B fluid. The general solutions are derived by using finite Hankel and discrete Laplace transforms to satisfy the imposed conditions and the governing equations. The special cases of our general solutions are also perused performing the same motion for fractional and ordinary Maxwell fluid, fractional and ordinary second-grade fluid and fractional and ordinary viscous fluid as well. The graphical illustration is depicted in order to explore how the two velocities and shear stresses profiles are impacted by different rheological parameters, for instance, fractional parameter, relaxation time, retardation time, material non-zero constant, dynamic viscosity and few others. Finally, ordinary and fractional operators have various similarities and differences on a circular pipe for helicoidal behavior of fluid flow.

References

  1. 1.
    G.I. Taylor, Philos. Trans. A 223, 289 (1923)ADSCrossRefGoogle Scholar
  2. 2.
    N.D. Waters, M.J. King, J. Phys. D 4, 204 (1971)ADSCrossRefGoogle Scholar
  3. 3.
    K.D. Rahaman, H. Ramkissoon, J. Non-Newtonian Fluid Mech. 57, 27 (1995)CrossRefGoogle Scholar
  4. 4.
    T. Hayat, A.M. Siddiqui, S. Asghar, Int. J. Eng. Sci. 39, 135 (2001)CrossRefGoogle Scholar
  5. 5.
    T. Hayat, M. Khan, M. Ayub, Math. Comput. Model. 43, 16 (2006)CrossRefGoogle Scholar
  6. 6.
    T. Qi, Y. Xu, Acta Mech. Sin. 23, 9 (2007)CrossRefGoogle Scholar
  7. 7.
    C. Fetecau, A. Awan, F. Corina, Bull. Math. Soc. Sci. Math. Roum. 52, 117 (2009)Google Scholar
  8. 8.
    F. Corina, C. Fetecau, M. Imran, Math. Rep. 11, 145 (2009)Google Scholar
  9. 9.
    I. Siddique, D. Vieru, Acta Mech. Sin. 25, 777 (2009)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    F. Corina, T. Hayat, C. Fetecau, J. Non-Newtonian Fluid Mech. 153, 191 (2008)CrossRefGoogle Scholar
  11. 11.
    M. Jamil, C. Fetecau, Nonlinear Anal. Real-World Appl. 11, 4302 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    A.S. Parveen, A. Ara, N. Khan, Commun. Nonlinear Sci. Numer. Simul. 14, 3309 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Q. Haitao, J. Hui, Nonlinear Anal. RWA 10, 2700 (2009)CrossRefGoogle Scholar
  14. 14.
    M.A. Imran, M. Tahir, M. Javaid, M. Imran, J. Comput. Theor. Nanosci. 13, 3405 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Kamran, M. Imran, M. Athar, Meccanica 48, 1215 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    L. Chunrui, L. Zheng, Y. Zhang, L. Ma, X. Zhang, Commun. Nonlinear Sci. Numer. Simul. 17, 5026 (2012)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Athar, M. Kamran, M. Imran, Meccanica 47, 603 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    D. Tong, Y. Liu, Int. J. Eng. Sci. 43, 281 (2005)CrossRefGoogle Scholar
  19. 19.
    A.A. Zafar, C. Fetecau, I.A. Mirza, Math. Rep. 18, 334 (2016)Google Scholar
  20. 20.
    M. Kamran, M. Imran, M. Athar, ISRN Math. Phys. 2012, 374670 (2012)Google Scholar
  21. 21.
    C.H.R. Friedrich, Rheol. Acta 30, 151 (1991)CrossRefGoogle Scholar
  22. 22.
    K.A. Abro, I. Khan, Chin. J. Phys. 55, 1583 (2017)CrossRefGoogle Scholar
  23. 23.
    P.N. Srivastava, Arch. Mech. Stos. 18, 145 (1966)Google Scholar
  24. 24.
    D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional calculus models and numerical methods, in Series on Complexity, Nonlinearity and Chaos (World Scientific, 2012)Google Scholar
  25. 25.
    M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)Google Scholar
  26. 26.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  27. 27.
    M. Toufik, A. Atangana, Eur. Phys. J. Plus 132, 444 (2017)CrossRefGoogle Scholar
  28. 28.
    J. Hristov, Progr. Fract. Differ. Appl. 3, 255 (2017)CrossRefGoogle Scholar
  29. 29.
    A. Atangana, J.F. Gómez Aguilar, Eur. Phys. J. Plus 133, 166 (2018)CrossRefGoogle Scholar
  30. 30.
    K.M. Saad, A. Atangana, D. Baleanu, Chaos 28, 063109 (2018)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    K.M. Owolabi, Chaos, Solitons Fractals 103, 544 (2017)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    K.M. Owolabi, Commun. Nonlinear Sci. Numer. Simul. 44, 304 (2017)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    K.M. Saad, D. Baleanu, A. Atangana, Comput. Appl. Math. 37, 5203 (2018)MathSciNetCrossRefGoogle Scholar
  34. 34.
    I. Koca, Eur. Phys. J. Plus 133, 100 (2018)CrossRefGoogle Scholar
  35. 35.
    A. Atangana, Physica A 505, 688 (2018)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    K.A. Abro, M. Hussain, M.M. Baig, Int. J. Adv. Appl. Sci. 4, 80 (2017)CrossRefGoogle Scholar
  37. 37.
    A. Khan, K.A. Abro, A. Tassaddiq, I. Khan, Entropy 19, 1 (2017)CrossRefGoogle Scholar
  38. 38.
    M.H. Laghari, K.A. Abro, A.A. Shaikh, Int. J. Adv. Appl. Sci. 4, 97 (2017)CrossRefGoogle Scholar
  39. 39.
    T. Abdeljawad, D. Baleanu, Commun. Nonlinear Sci. Numer. Simul. 16, 4682 (2011)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    R. Abu-Saris, Q.M. Al-Mdallal, Fract. Calc. Appl. Anal. 16, 613 (2013)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Q.M. Al-Mdallal, M.I. Syam, Commun. Nonlinear Sci. Numer. Simul. 17, 2299 (2012)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Q.M. Al-Mdallal, M.A. Hajji, Fract. Calc. Appl. Anal. 18, 1423 (2015)MathSciNetCrossRefGoogle Scholar
  43. 43.
    M. Jamil, K.A. Abro, N.A. Khan, Nonlinear Eng. 4, 191 (2015)Google Scholar
  44. 44.
    M. Jamil, Nonlinear Eng. 4, 105 (2015)Google Scholar
  45. 45.
    C. Fetecau, A. Mahmood, Corina Fetecau, D. Vieru, Comput. Math. Appl. 56, 3096 (2008)MathSciNetCrossRefGoogle Scholar
  46. 46.
    I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications (Academic Press, San Diego, California, USA, 1999)Google Scholar
  47. 47.
    F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models (Imperial College Press, London, 2010)Google Scholar
  48. 48.
    M. Athar, M. Kamran, M. Imran, Meccanica 47, 603 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kashif Ali Abro
    • 1
  • Ilyas Khan
    • 2
  • J. F. Gómez-Aguilar
    • 3
    Email author
  1. 1.Department of Basic Sciences and Related StudiesMehran University of Engineering and TechnologyJamshoroPakistan
  2. 2.Basic Engineering Sciences DepartmentCollege of Engineering Majmaah UniversityAl Majma’ahSaudi Arabia
  3. 3.CONACyT-Tecnológico Nacional de México/CENIDETInterior Internado Palmira S/N, Col. PalmiraCuernavacaMexico

Personalised recommendations