Advertisement

Hydrogenic impurity effect on the optical nonlinear absorption properties of spherical quantum dots with a parabolic potential

  • Jian-Hui YuanEmail author
  • Li-Li Wang
  • Zheng-Ye Xiong
  • Ni Chen
  • Zhi-Hai Zhang
  • Yong-Xiang Zhao
Regular Article
  • 49 Downloads

Abstract.

The linear, third-order and total optical absorption coefficients of a hydrogenic impurity in spherical quantum dots subjected to a parabolic potential are calculated by the compact density-matrix approach and the finite difference method. The effect of the potential parameter \(\gamma_{p}\) and the confining radius R on the optical absorption coefficients of the spherical quantum dots are investigated. The following conclusions are drawn: 1) The reduction of the size of the quantum dot can lead to a blue-shift of the absorption spectrum no matter whether there is an impurity or not; however, the intensity of the absorption spectrum slightly decreases as an impurity is introduced into the spherical quantum dot. 2) The saturation case of total optical absorption coefficients is observed more easily in the case of weak confinement than in the case of strong confinement; and there is a one-to-one correspondence relationship among the intensity of the absorption peak, the potential parameter \(\gamma_{p}\) and the saturation intensity Is, corresponding to the saturation case of the total optical absorption coefficients. 3) There is an approximate linear relationship between the value of Is and the value of \( \gamma_{p}\) as the value of \( \gamma_{p}\) is large.

References

  1. 1.
    T. Chakraborty, Quantum Dots (Elsevier Science, Amsterdam, 1999)Google Scholar
  2. 2.
    S.M. Reimann, M. Manninen, Rev. Mod. Phys. 74, 1283 (2002)CrossRefGoogle Scholar
  3. 3.
    E. Rosencher, Ph. Bois, Phys. Rev. B 44, 11315 (1991)CrossRefGoogle Scholar
  4. 4.
    M.A. Cataluna, D.I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesari-takis, D. Syvridis, I. Krestnikov, D. Livshits, E.U. Rafailov, Opt. Express 18, 12832 (2010)CrossRefGoogle Scholar
  5. 5.
    Wen-fang Xie, Superlattices Microstruct. 56, 8 (2013)CrossRefGoogle Scholar
  6. 6.
    R. Khordad, B. Mirhosseini, Opt. Commun. 285, 1233 (2012)CrossRefGoogle Scholar
  7. 7.
    T.H. Hood, J. Light Wave Technol. 6, 743 (1988)CrossRefGoogle Scholar
  8. 8.
    D.A.B. Miller, Int. J. High. Speed Electron. Syst. 1, 19 (1990)CrossRefGoogle Scholar
  9. 9.
    G.-H. Wang, Physica B 315, 234 (2002)CrossRefGoogle Scholar
  10. 10.
    J.-H. Yuan, Y. Zhang, D.Z. Huang, J.J. Zhang, X. Zhang, J. Lumin. 143, 558 (2013)CrossRefGoogle Scholar
  11. 11.
    S.L. Chuang, D. Ahn, J. Appl. Phys. 65, 2822 (1989)CrossRefGoogle Scholar
  12. 12.
    Y. Maeda, Phys. Rev. B 51, 1658 (1995)CrossRefGoogle Scholar
  13. 13.
    W.T. Xu, H.-l. Tu, D.-l. Liu, R. Teng, Q.-h. Xiao, Q. Chang, J. Nanopart. Res. 14, 682 (2012)CrossRefGoogle Scholar
  14. 14.
    J.M. Ferreyra, C.R. Proetto, Phys. Rev. B 52, 2309 (1995)CrossRefGoogle Scholar
  15. 15.
    S.G. Jayam, K. Navaneethakrishnan, Solid State Commun. 126, 681 (2003)CrossRefGoogle Scholar
  16. 16.
    E.C. Niculescu, Czech. J. Phys. 51, 1205 (2001)CrossRefGoogle Scholar
  17. 17.
    Z. Xiao, J. Zhu, F. He, Superlattices Microstruct. 19, 2 (1996)CrossRefGoogle Scholar
  18. 18.
    Y.P. Varshni, Superlattices Microstruct. 23, 145 (1998)CrossRefGoogle Scholar
  19. 19.
    D.S. Chuu, C.M. Hsiao, W.N. Mei, Phys. Rev. B 46, 3898 (1992)CrossRefGoogle Scholar
  20. 20.
    W. Xie, Physica B 403, 2828 (2008)CrossRefGoogle Scholar
  21. 21.
    J.-H. Yuan, C. Liu, Physica E 41, 41 (2008)CrossRefGoogle Scholar
  22. 22.
    S.S. Li, J.B. Xia, Phys. Lett. A 366, 120 (2007)CrossRefGoogle Scholar
  23. 23.
    J.L. Zhu, X. Chen, Phys. Rev. B 50, 4497 (1994)CrossRefGoogle Scholar
  24. 24.
    F. Carreno, M.A. Anton, Sonia Melle, Oscar G. Calderon, E. Cabrera-Granado, Joel Cox, Mahi R. Singh, A. Egatz-Gomez, J. Appl. Phys. 115, 064304 (2014)CrossRefGoogle Scholar
  25. 25.
    Joel D. Cox, Mahi R. Singh, Miguel A. Anton, Fernando Carreno, J. Phys.: Condens. Matter 25, 385302 (2013)Google Scholar
  26. 26.
    Joel D. Cox, Mahi R. Singh, Catalina von Bilderling, Andrea V. Bragas, Adv. Opt. Mater. 1, 460 (2013)CrossRefGoogle Scholar
  27. 27.
    Chris Racknor, Mahi R. Singh, Yinan Zhang, David J.S. Birch, Yu Chen, Methods Appl. Fluoresc. 2, 015002 (2014)CrossRefGoogle Scholar
  28. 28.
    Mahi R. Singh, Chris Racknor, J. Opt. Soc. Am. B 32, 2216 (2015)CrossRefGoogle Scholar
  29. 29.
    D. Ahn, S.L. Chuang, J. Appl. Phys. 62, 3052 (1987)CrossRefGoogle Scholar
  30. 30.
    U. Bockelmann, G. Bastard, Phys. Rev. B 45, 1700 (1992)CrossRefGoogle Scholar
  31. 31.
    S. Sauvage, P. Boucaud, Phys. Rev. B 59, 9830 (1999)CrossRefGoogle Scholar
  32. 32.
    S. Baskoutas, C. Garoufalis, A.F. Terzis, Eur. Phys. J. B 84, 241 (2011)CrossRefGoogle Scholar
  33. 33.
    I. Karabulut, S. Baskoutas, J. Appl. Phys. 103, 073512 (2008)CrossRefGoogle Scholar
  34. 34.
    B. Cakir, Y. Yakar, A. Ozmen, J. Lumin. 132, 2659 (2012)CrossRefGoogle Scholar
  35. 35.
    S. Sakiroglu, U. Dogan, A. Yildiz, K. Akgungor, H. Epik, Y. Ergun, H. Sarn, I. Sokmen, Chin. Phys. B 18, 1578 (2009)CrossRefGoogle Scholar
  36. 36.
    Z.-H. Zhang, G.-C. Zhuang, K.-X. Guo, J.-H. Yuan, Superlattices Microstruct. 100, 440 (2016)CrossRefGoogle Scholar
  37. 37.
    P. Hosseinpour, V.V. Soltani, J. Barvestani, Physica E 80, 48 (2016)CrossRefGoogle Scholar
  38. 38.
    I.F.I. Mikhail, A.M. Shafee, Physica B 507, 142 (2017)CrossRefGoogle Scholar
  39. 39.
    J.H. Yuan, Y. Zhang, X.X. Guo, J.J. Zhang, H. Mo, Physica E 68, 232 (2015)CrossRefGoogle Scholar
  40. 40.
    M. Dezhkam, A. Zakery, Physica B 443, 70 (2014)CrossRefGoogle Scholar
  41. 41.
    L.-L. Wang, N. Chen, S. Bin, Y.-H. Mo, L.-L. Ma, G.-L. He, Z.-H. Zhang, J.-H. Yuan, Philos. Mag. 98, 899 (2018)CrossRefGoogle Scholar
  42. 42.
    J.-H. Yuan, N. Chen, Z.-H. Zhang, J. Su, S.-F. Zhou, X.-L. Lu, Y.-X. Zhao, Superlattices Microstruct. 100, 957 (2016)CrossRefGoogle Scholar
  43. 43.
    A. Ibral, A. Zouitine, E.M. Assaid, E.M. Feddi, F. Dujardin, Physica B 449, 261 (2014)CrossRefGoogle Scholar
  44. 44.
    Paul Harrison, Alex Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 4th edition (Wiley, 2016)Google Scholar
  45. 45.
    M. Solaimani, S.M.A. Aleomraninejad, L. Lavaei, Superlattices Microstruct. 111, 556 (2017)CrossRefGoogle Scholar
  46. 46.
    G.H. Wang, Opt. Commun. 355, 1 (2015)CrossRefGoogle Scholar
  47. 47.
    J.-S. Huang, J.-H. Yuan, Mod. Phys. Lett. B 24, 657 (2010)CrossRefGoogle Scholar
  48. 48.
    S. Liu, Q. Wang, K. Wang, Y. Yao, H. Zhang, T. Ren, Z. Yin, F. Du, B. Zhang, J. He, Opt. Lett. 42, 3972 (2017)CrossRefGoogle Scholar
  49. 49.
    Z. Li, Y. Zhang, C. Cheng, H. Yu, F. Chen, Opt. Express 26, 11321 (2018)CrossRefGoogle Scholar
  50. 50.
    M. Boucharef, C. Di Bin, M.S. Boumaza, M. Colas, H.J. Snaith, B. Ratier, J. Boucle, Nanotechnology 21, 205203 (2010)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsGuangxi Medical UniversityGuangxiChina
  2. 2.Department of PhysicsEast Carolina UniversityGreenvilleUSA
  3. 3.School of Physics and ElectronicsYancheng Teachers UniversityYanchengChina
  4. 4.National Center for International Research of Biological Targeting Diagnosis and Therapy Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy Guangxi Medical UniversityGuangxiChina

Personalised recommendations