Advertisement

Comparison of Monte Carlo methods for adjoint neutron transport

  • Vito Vitali
  • Sandra Dulla
  • Piero Ravetto
  • Andrea Zoia
Regular Article
  • 2 Downloads

Abstract.

Solving the adjoint linear transport equation by Monte Carlo methods can be convenient for applications emerging in radiation shielding, where the detector is typically small (in terms of probability of detecting a signal). In this work we compare a few stochastic models that can be used in order to formally solve the adjoint transport equation by simulating artificial particles called adjunctons: these models differ in the form of adjuncton cross-sections, scattering laws and multiplicities. In view of testing the accuracy and the performances of these schemes, we have selected some benchmark configurations for continuous-energy transport in infinite media, where reference solutions can be established. The role of population control techniques, such as Russian roulette and splitting, is also carefully examined.

References

  1. 1.
    I. Lux, L. Koblinger, Monte Carlo Particle Trasport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, Florida, 1991)Google Scholar
  2. 2.
    J.J. Duderstadt, W.R. Martin, Transport Theory (Wiley, NY, 1979)Google Scholar
  3. 3.
    J. Lewins, Importance: The Adjoint Function (Pergamon Press, London, 1965)Google Scholar
  4. 4.
    G. Goertzel, M.H. Kalos, Monte Carlo Methods in Transport Problems, in Progress in Nuclear Energy, Vol. 2, Series 1 (Pergamon Press, NY, 1958)Google Scholar
  5. 5.
    J.E. Hoogenboom, Nucl. Sci. Eng. 160, 1 (2008)CrossRefGoogle Scholar
  6. 6.
    M.H. Kalos, Nucl. Sci. Eng. 33, 284 (1968)CrossRefGoogle Scholar
  7. 7.
    L.B. Levitt, J. Spanier, Nucl. Sci. Eng. 37, 278 (1969)CrossRefGoogle Scholar
  8. 8.
    B. Eriksson, C. Johansson, M. Leimdorfer, M.H. Kalos, Nucl. Sci. Eng. 37, 410 (1969)CrossRefGoogle Scholar
  9. 9.
    C.W. Maynard, Nucl. Sci. Eng. 82, 97 (1961)CrossRefGoogle Scholar
  10. 10.
    L.L. Carter, N.J. McCormick, Nucl. Sci. Eng. 39, 296 (1970)CrossRefGoogle Scholar
  11. 11.
    D.C. Irving, Nucl. Eng. Design 15, 273 (1971)CrossRefGoogle Scholar
  12. 12.
    A. De Matteis, Meccanica 3, 162 (1974)MathSciNetCrossRefGoogle Scholar
  13. 13.
    J.E. Hoogenboom, Adjoint Monte Carlo Methods in Neutron Transport Calculations, PhD Thesis, Delft, NL (1977)Google Scholar
  14. 14.
    J.E. Hoogenboom, Nucl. Sci. Eng. 79, 357 (1981)CrossRefGoogle Scholar
  15. 15.
    A. De Matteis, R. Simonini, Nucl. Sci. Eng. 65, 93 (1978)CrossRefGoogle Scholar
  16. 16.
    L.L. Carter, Los Alamos scientific report LA4488 (1970)Google Scholar
  17. 17.
    R.J. Brissenden, Prog. Nucl. Energy 24, 129 (1990)CrossRefGoogle Scholar
  18. 18.
    M.J. Grimstone, in Proceedings of the ANS Radiation Protection and Shielding Division Topical Conference (Nashville, April 19–23, 1998) pp. 143--150Google Scholar
  19. 19.
    J.E. Hoogenboom, in Proceedings of the International Conference on Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications, M&C 99 (Madrid, September 27–30, 1999) pp. 1912--1921Google Scholar
  20. 20.
    J.E. Hoogenboom, Nucl. Sci. Eng. 143, 99 (2003)CrossRefGoogle Scholar
  21. 21.
    C.M. Diop, O. Petit, C. Jouanne, M. Coste-Delclaux, Ann. Nucl. Energy 37, 1186 (2010)CrossRefGoogle Scholar
  22. 22.
    P. Saracco, S. Dulla, P. Ravetto, Eur. Phys. J. Plus 131, 412 (2016)CrossRefGoogle Scholar
  23. 23.
    M.L. Williams, Nucl. Sci. Eng. 108, 355 (1991)CrossRefGoogle Scholar
  24. 24.
    I.V. Serov, T.M. John, J.E. Hoogenboom, Nucl. Sci. Eng. 133, 55 (1999)CrossRefGoogle Scholar
  25. 25.
    T. Ueki, J.E. Hoogenboom, J.L. Kloosterman, Nucl. Sci. Eng. 137, 117 (2001)CrossRefGoogle Scholar
  26. 26.
    E. Brun, F. Damian, C.M. Diop, E. Dumonteil, F.X. Hugot, C. Jouanne, Y.K. Lee, F. Malvagi, A. Mazzolo, O. Petit, J.C. Trama, T. Visonneau, A. Zoia, Ann. Nucl. Energy 82, 151 (2015)CrossRefGoogle Scholar
  27. 27.
    G. Placzek, Phys. Rev. 69, 423 (1946)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    V. Weisskopf, Phys. Rev. 52, 295 (1937)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Vito Vitali
    • 1
  • Sandra Dulla
    • 2
  • Piero Ravetto
    • 2
  • Andrea Zoia
    • 1
  1. 1.DEN-Service d’études des réacteurs et de mathématiques appliquées (SERMA), CEAUniversité Paris-SaclayGif-sur-YvetteFrance
  2. 2.Politecnico di Torino, Dipartimento EnergiaNEMO Group, Corso Duca degli Abruzzi 24TorinoItaly

Personalised recommendations