Advertisement

Prediction of enthalpy for nitrogen gas

  • Ming Deng
  • Chun-Sheng Jia
Regular Article
  • 17 Downloads

Abstract.

Based on the modified Rosen-Morse oscillator in the description of the internal vibration of a molecule, we propose an explicit representation of molar enthalpy for gaseous diatomic molecule substances. In terms of experimental values of the dissociation energy, equilibrium bond length and vibrational frequency, the molar enthalpy values of the nitrogen gas can be well predicted in the temperature range of 100-6000K from a comparison of theoretically calculated results and experimental data. The present enthalpy calculation model only needs three molecular constants without the need for a large amount of experimental spectroscopy data.

References

  1. 1.
    J.M. McEnaney, A.R. Singh, J.A. Schwalbe, J. Kibsgaard, J.C. Lin, M. Cargnello, T.F. Jaramillo, J.K. Nørskov, Energy Environ. Sci. 10, 1621 (2017)CrossRefGoogle Scholar
  2. 2.
    A. Ghafoori, K. Shahbazi, A. Darabi, A. Soleymanzadeh, A. Abedini, Petrol. Sci. Tech. 30, 1071 (2012)CrossRefGoogle Scholar
  3. 3.
    T.L. Ellington, G.S. Tschumper, Comput. Theor. Chem. 1021, 109 (2013)CrossRefGoogle Scholar
  4. 4.
    S.D. Springer, B.A. McElmurry, Z. Wang, I.I. Leonov, R.R. Lucchese, J.W. Bevan, L.H. Coudert, Chem. Phys. Lett. 633, 229 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    S. Muromachi, H. Miyamoto, R. Ohmura, Int. J. Thermophys. 38, 173 (2017)CrossRefGoogle Scholar
  6. 6.
    N.M. Yunus, M.I.A. Mutalib, Z. Man, M.A. Bustam, T. Murugesan, Chem. Eng. J. 189-190, 94 (2012)CrossRefGoogle Scholar
  7. 7.
    S.P. Verevkin, V.N. Emel’yanenko, M.A. Varfolomeev, B.N. Solomonov, K.V. Zherikova, S.V. Melkhanova, Fluid Phase Equilib. 387, 160 (2015)CrossRefGoogle Scholar
  8. 8.
    P. Ammendola, F. Raganati, R. Chirone, Chem. Eng. J. 322, 302 (2017)CrossRefGoogle Scholar
  9. 9.
    C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, H.M. Tang, R. Zeng, Chem. Eng. Sci. 183, 26 (2018)CrossRefGoogle Scholar
  10. 10.
    C.S. Jia, Y.F. Diao, X.J. Liu, P.Q. Wang, J.Y. Liu, G.D. Zhang, J. Chem. Phys. 137, 014101 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    P.Q. Wang, L.H. Zhang, C.S. Jia, J.Y. Liu, J. Mol. Spectrosc. 274, 5 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    C.S. Jia, L.H. Zhang, X.L. Peng, Int. J. Quantum Chem. 117, e25383 (2017)CrossRefGoogle Scholar
  13. 13.
    C.S. Jia, L.H. Zhang, C.W. Wang, Chem. Phys. Lett. 667, 211 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    X.Q. Song, C.W. Wang, C.S. Jia, Chem. Phys. Lett. 673, 50 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, R. Zeng, X.T. You, Chem. Phys. Lett. 676, 150 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    J.F. Wang, X.L. Peng, L.H. Zhang, C.W. Wang, C.S. Jia, Chem. Phys. Lett. 686, 131 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, H.M. Tang, J.Y. Liu, Y. Xiong, R. Zeng, Chem. Phys. Lett. 692, 57 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    M. Buchowiecki, Chem. Phys. Lett. 692, 236 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    J.Y. Liu, J.F. Du, C.S. Jia, Eur. Phys. J. Plus 128, 139 (2013)CrossRefGoogle Scholar
  20. 20.
    C.S. Jia, L.H. Zhang, J.Y. Liu, Eur. Phys. J. Plus 131, 2 (2016)CrossRefGoogle Scholar
  21. 21.
    Z.W. Shui, C.S. Jia, Eur. Phys. J. Plus 131, 215 (2016)CrossRefGoogle Scholar
  22. 22.
    B. Tang, C.S. Jia, Eur. Phys. J. Plus 132, 375 (2017)CrossRefGoogle Scholar
  23. 23.
    C.S. Jia, T. He, Z.W. Shui, Comput. Theor. Chem. 1108, 57 (2017)CrossRefGoogle Scholar
  24. 24.
    G. Ovando, J.J. Peña, J. Morales, Theor. Chem. Acc. 135, 62 (2016)CrossRefGoogle Scholar
  25. 25.
    O. Mustafa, J. Phys. B 48, 065101 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Y.W. Akanni, I. Kazeem, Chin. J. Phys. 53, 060401 (2015)Google Scholar
  27. 27.
    A.N. Ikot, H. Hassanabadi, H.P. Obong, Y.E. Chad Umoren, C.N. Isonguyo, B.H. Yazarloo, Chin. Phys. B 23, 120303 (2014)CrossRefGoogle Scholar
  28. 28.
    A. Tas, O. Aydogdu, M. Salti, Ann. Phys. 379, 67 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    H.M. Tang, G.C. Liang, L.H. Zhang, F. Zhao, C.S. Jia, Can. J. Chem. 92, 341 (2014)CrossRefGoogle Scholar
  30. 30.
    C.S. Jia, J.W. Dai, L.H. Zhang, J.Y. Liu, G.D. Zhang, Chem. Phys. Lett. 619, 54 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    H. Hassanabadi, B.H. Yazarloo, L.L. Lu, Chin. Phys. Lett. 29, 020303 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    H. Hassanabadi, B.H. Yazarloo, P. Kościk, Phys. Part. Nucl. Lett. 10, 539 (2013)CrossRefGoogle Scholar
  33. 33.
    H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, H. Rahimov, Can. J. Phys. 90, 633 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    National Institute of Standards and Technology (NIST), NIST Chemistry WebBook (2017) NIST Standard Reference Database Number 69, http://webbook.nist.gov/chemistry/
  35. 35.
    G.D. Zhang, J.Y. Liu, L.H. Zhang, W. Zhou, C.S. Jia, Phys. Rev. A 86, 062510 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    A.A. Frost, B. Musulin, J. Am. Chem. Soc. 76, 2045 (1954)CrossRefGoogle Scholar
  37. 37.
    C.S. Jia, Z.W. Shui, Eur. Phys. J. A 51, 144 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    M.L. Strekalov, Chem. Phys. Lett. 439, 209 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    F. Schwabl, Statistical Mechanics, 2nd edition (Springer-Verlag, Berlin Heidelberg, 2006)Google Scholar
  40. 40.
    D. Steele, E.R. Lippincott, J.T. Vanderslice, Rev. Mod. Phys. 34, 239 (1962)ADSCrossRefGoogle Scholar
  41. 41.
    Y.K. Li, L.X. Nghiem, Can. J. Chem. Eng. 64, 486 (1986)CrossRefGoogle Scholar
  42. 42.
    P.M. Mathias, J.P. O’Connell, Ind. Eng. Chem. Res. 51, 5090 (2012)CrossRefGoogle Scholar
  43. 43.
    J.S. Chickos, W.E. Acree Jr., Thermochim. Acta 495, 5 (2009)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chengdu Yulin High SchoolChengduChina
  2. 2.State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum UniversityChengduChina

Personalised recommendations