Advertisement

Closed-form expression for geometrically nonlinear large deformation of nano-beams subjected to end force

  • Mohammad A. Maneshi
  • Esmaeal Ghavanloo
  • S. Ahmad Fazelzadeh
Regular Article
  • 33 Downloads

Abstract.

In this paper, exact analytical solutions are developed to describe size-dependent nonlinear bending behavior of cantilever nano-beams subjected to end force. To obtain large deformation of the nano-beam, geometric and equilibrium equations of the deformed element are used in conjunction with the nonlocal differential constitutive relation. The governing equations are obtained by considering the assumption of inextensibility and the Euler-Bernoulli hypothesis. Some numerical examples have been solved to demonstrate the applicability and accuracy of the present formulations. Furthermore, by using the present closed-form solutions, the deformed configurations of the nano-beams are determined for different loading conditions. Our results reveal that the nano-beam exhibits softening or hardening behaviors when nonlocality is increasing, depending on the applied loading conditions.

References

  1. 1.
    H.S. Alkhaldi, I. Abu-Alshaikh, R. Abu-Mallouh, O. Ghazal, Eur. J. Mech. A/Solids 47, 271 (2014)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    S.V.N.T. Kuchibhatla, A.S. Karakoti, D. Bera, S. Seal, Progr. Mater. Sci. 52, 699 (2007)CrossRefGoogle Scholar
  3. 3.
    S.G. Nilsson, E.L. Sarwe, L. Montelius, Appl. Phys. Lett. 83, 990 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    F. Xu, Q. Qin, A. Mishra, Y. Gu, Y. Zhu, Nano Res. 3, 271 (2010)CrossRefGoogle Scholar
  5. 5.
    C.L. Hsin, W. Mai, Y. Gu, Y. Gao, C.T. Huang, Y. Liu, L.J. Chen, Z.L. Wang, Adv. Mater. 20, 3919 (2008)CrossRefGoogle Scholar
  6. 6.
    C.M. Wang, Y. Xiang, S. Kitipornchai, Int. J. Appl. Mech. 1, 259 (2009)CrossRefGoogle Scholar
  7. 7.
    J. He, C.M. Lilley, Computat. Mech. 44, 395 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    E. Ghavanloo, F. Daneshmand, M. Amabili, J. Biol. Phys. 36, 427 (2010)CrossRefGoogle Scholar
  9. 9.
    J.N. Reddy, Int. J. Eng. Sci. 48, 1507 (2010)CrossRefGoogle Scholar
  10. 10.
    D. Zeng, Q. Zheng, Acta Mech. Solida Sin. 23, 394 (2010)CrossRefGoogle Scholar
  11. 11.
    A.R. Setoodeh, M. Khosrownejad, P. Malekzadeh, Physica E 43, 1730 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    V.B. Glavardanov, D.T. Spasic, T.M. Atanackovic, Int. J. Solids Struct. 49, 2559 (2012)CrossRefGoogle Scholar
  13. 13.
    S.P. Xu, C.M. Wang, M.R. Xu, Physica E 44, 1380 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    J.L. Liu, Y. Mei, R. Xia, W.L. Zhu, Physica E 44, 2050 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Sapsathiarn, R.K.N.D. Rajapakse, IEEE Trans. Nanotechnol. 11, 247 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    S.G. Nilsson, E.L. Sarwe, L. Montelius, Appl. Phys. Lett. 85, 3555 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    S.A. Emam, Appl. Math. Model. 37, 6929 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    C. Thongyothee, S. Chucheepsakul, Int. J. Appl. Mech. 7, 1550042 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Taghipour, G.H. Baradaran, Int. J. Mech. Sci. 114, 111 (2016)CrossRefGoogle Scholar
  20. 20.
    M. Lembo, Int. J. Solids Struct. 90, 215 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Lembo, Acta Mech. 228, 2283 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    C.M. Wang, H. Zhang, N. Challamel, Y. Xiang, J. Eng. Mech. 142, 04016037 (2016)CrossRefGoogle Scholar
  23. 23.
    D. Zorica, N. Challamel, M. Janev, T.M. Atanackovic, J. Nanomech. Micromech. 7, 04017004 (2017)CrossRefGoogle Scholar
  24. 24.
    H.L. Dai, S. Ceballes, A. Abdelkefi, Y.Z. Honga, L. Wang, Appl. Math. Model. 55, 758 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    G. Romano, R. Barretta, Compos. Part B 114, 184 (2017)CrossRefGoogle Scholar
  26. 26.
    G. Romano, R. Barretta, Int. J. Eng. Sci. 115, 14 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Apuzzo, R. Barretta, R. Luciano, F.M. de Sciarra, R. Penna, Compos. Part B 123, 105 (2017)CrossRefGoogle Scholar
  28. 28.
    R. Barretta, L. Feo, R. Luciano, F.M. de Sciarra, R. Penna, PSU Res. Rev. 1, 164 (2017)CrossRefGoogle Scholar
  29. 29.
    R. Barretta, M. Diaco, L. Feo, R. Luciano, F.M. de Sciarra, R. Penna, Mech. Res. Commun. 87, 35 (2018)CrossRefGoogle Scholar
  30. 30.
    A.C. Eringen, Nonlocal Continuum Field Theories (Springer-Verlag, NewYork, 2002)Google Scholar
  31. 31.
    H. Rafii-Tabar, E. Ghavanloo, S.A. Fazelzadeh, Phys. Rep. 638, 1 (2016)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Q. Wang, Y. Shindo, J. Mech. Mater. Struct. 1, 663 (2006)CrossRefGoogle Scholar
  33. 33.
    X.J. Xu, Z.C. Deng, K. Zhang, W. Xu, Compos. Struct. 145, 43 (2016)CrossRefGoogle Scholar
  34. 34.
    J. Fernández-Sáez, R. Zaera, J.A. Loya, J.N. Reddy, Int. J. Eng. Sci. 99, 107 (2016)CrossRefGoogle Scholar
  35. 35.
    R. Barretta, L. Feo, R. Luciano, F.M. de Sciarra, Compos. Part B 96, 274 (2016)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mohammad A. Maneshi
    • 1
  • Esmaeal Ghavanloo
    • 1
  • S. Ahmad Fazelzadeh
    • 1
  1. 1.School of Mechanical EngineeringShiraz UniversityShirazIran

Personalised recommendations