Advertisement

Analysis of a fractional model of the Ambartsumian equation

  • Devendra Kumar
  • Jagdev Singh
  • Dumitru Baleanu
  • Sushila Rathore
Regular Article
  • 13 Downloads

Abstract.

The prime target of this work is to investigate a fractional model of the Ambartsumian equation. This equation is very useful to describe the surface brightness of the Milky Way. The Ambartsumian equation of fractional order is solved with the aid of the HATM. The solution is presented in terms of the power series, which is convergent for all real values of variables and parameters. The outcomes drawn with the help of the HATM are presented in the form of graphs.

References

  1. 1.
    V.A. Ambartsumian, Dokl. Akad Nauk USSR 44, 223 (1944)Google Scholar
  2. 2.
    J. Patade, S. Bhalekar, Natl. Acad. Sci. Lett. 40, 291 (2017)CrossRefGoogle Scholar
  3. 3.
    I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)Google Scholar
  4. 4.
    M. Caputo, Elasticità e Dissipazione (Zanichelli, Bologna, 1969)Google Scholar
  5. 5.
    K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)Google Scholar
  6. 6.
    D. Baleanu, Z.B. Guvenc, J.A. Tenreiro Machado (Editors), New Trends in Nanotechnology and Fractional Calculus Applications (Springer Dordrecht Heidelberg, London, New York, 2010)Google Scholar
  7. 7.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)Google Scholar
  8. 8.
    D. Kumar, J. Singh, D. Baleanu, Nonlinear Dyn. 87, 511 (2017)CrossRefGoogle Scholar
  9. 9.
    H.M. Baskonus, T. Mekkaoui, Z. Hammouch, H. Bulut, Entropy 17, 5771 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    A.H. Bhrawy, M.A. Zaky, D. Baleanu, Rom. Rep. Phys. 67, 340 (2015)Google Scholar
  11. 11.
    J. Singh, D. Kumar, Z. Hammouch, A. Atangana, Appl. Math. Comput. 316, 504 (2018)MathSciNetGoogle Scholar
  12. 12.
    D. Kumar, J. Singh, D. Baleanu, Nonlinear Dyn. 91, 307 (2018)CrossRefGoogle Scholar
  13. 13.
    A. Ahmadian, F. Ismail, S. Salahshour, D. Baleanu, F. Ghaemi, Commun. Nonlinear Sci. Numer. Simul. 53, 44 (2017)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    D. Kumar, J. Singh, D. Baleanu, Physica A 492, 155 (2018)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Singh, D. Kumar, D. Baleanu, Chaos 27, 103113 (2017)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Y. Liang, Q.Y. Allen, W. Chen, R.G. Gatto, L. Colon-Perez, T.H. Mareci, R.L. Magin, Commun. Nonlinear Sci. Numer. Simul. 39, 529 (2016)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    X.J. Yang, H.M. Srivastava, D.F.M. Torres, A. Debbouche, Therm. Sci. 21, S1 (2017)CrossRefGoogle Scholar
  18. 18.
    J.F. Gómez-Aguilar, M.G. López-López, V.M. Alvarado-Martínez, D. Baleanu, H. Khan, Entropy 19, 681 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    A. Carvalho, C.M.A. Pinto, Commun. Nonlinear Sci. Numer. Simul. 61, 104 (2018)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    X.J. Yang, J.A.T. Machado, D. Baleanu, Rom. Rep. Phys. 69, 115 (2017)Google Scholar
  21. 21.
    J. Singh, D. Kumar, M.A. Qurashi, D. Baleanu, Open Phys. 15, 35 (2018)CrossRefGoogle Scholar
  22. 22.
    D. Kumar, J. Singh, D. Baleanu, Eur. Phys. J. Plus 133, 70 (2018)CrossRefGoogle Scholar
  23. 23.
    J. Singh, D. Kumar, D. Baleanu, Appl. Math. Comput. 335, 12 (2018)MathSciNetGoogle Scholar
  24. 24.
    S.J. Liao, Beyond Perturbation: Introduction to the Homotpy Analysis Method (Chapman and Hall/CRC Press, Boca Raton, 2003)Google Scholar
  25. 25.
    S.J. Liao, Appl. Math. Comput. 147, 499 (2004)MathSciNetGoogle Scholar
  26. 26.
    S.J. Liao, Int. J. Non-Linear Mech. 30, 371 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    M. Khan, M.A. Gondal, I. Hussain, S.K. Vanani, Math. Comput. Model. 55, 1143 (2012)CrossRefGoogle Scholar
  28. 28.
    D. Kumar, Ravi P. Agarwal, J. Singh, J. Comput. Appl. Math. 339, 405 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    J. Singh, M.M. Rashidi, Sushila, D. Kumar, Neural Comput. Appl. (2017), DOI: 10.1007/s00521-017-3198-yGoogle Scholar
  30. 30.
    D. Kumar, J. Singh, D. Baleanu, Rom. Rep. Phys. 69, 103 (2017)Google Scholar
  31. 31.
    Zaid M. Odibat, Appl. Math. Comput. 217, 782 (2010)MathSciNetGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Devendra Kumar
    • 1
  • Jagdev Singh
    • 1
  • Dumitru Baleanu
    • 2
    • 3
  • Sushila Rathore
    • 4
  1. 1.Department of MathematicsJECRC UniversityJaipurIndia
  2. 2.Department of Mathematics, Faculty of Arts and SciencesCankaya UniversityEtimesgutTurkey
  3. 3.Institute of Space SciencesMagurele-BucharestRomania
  4. 4.Department of PhysicsVivekananda Global UniversityJaipurIndia

Personalised recommendations