Advertisement

\(\eta\) and \(\omega\) mesons as new degrees of freedom in the intranuclear cascade model INCL

  • J. -C. David
  • A. Boudard
  • J. Cugnon
  • J. Hirtz
  • S. Leray
  • D. Mancusi
  • J. L. Rodriguez-Sanchez
Regular Article
  • 8 Downloads

Abstract.

The intranuclear cascade model INCL (Liège Intranuclear Cascade) is now able to simulate spallation reactions induced by projectiles with energies up to roughly 15 GeV. This was made possible thanks to the implementation of multipion emission in the NN, \(\Delta\)N and \(\pi\)N interactions. The results obtained with reactions on nuclei induced by nucleons or pions gave confidence in the model. A next step will be the addition of the strange particles, \(\Lambda\), \(\Sigma\) and kaons, in order to not only refine the high-energy modeling, but also to extend the capabilities of INCL, as studying hypernucleus physics. Between those two versions of the code, the possibility to treat the \(\eta\) and \(\omega\) mesons in INCL has been performed and this is the topic of this paper. Production yields of these mesons increase with energy and it is interesting to test their roles at higher energies. More specifically, studies of \(\eta\) rare decays benefit from accurate simulations of its production. These are the two reasons for their implementation. Ingredients of the model, like elementary reaction cross sections, are discussed and comparisons with experimental data are carried out to test the reliability of those particle productions.

References

  1. 1.
    M. Blann, International Code Comparison for Intermediate Energy Nuclear Data, NEA/OECD, NSC/DOC(94)-2 (Paris, 1993)Google Scholar
  2. 2.
    R. Michel, P. Nagel, International Codes and Model Intercomparison for Intermediate Energy Activation Yields, NEA/OECD, NSC/DOC(97)-1 (Paris, 1997)Google Scholar
  3. 3.
    S. Leray et al., J. Korean Phys. Soc. 59, 791 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    B. Nilsson-Almqvist, E. Stenlund, Comput. Phys. Commun. 43, 387 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    T. Sjöstrand, S. Mrenna, P. Skands, arXiv:hep-ph/0603175v2 (2006)Google Scholar
  6. 6.
    J. Aichelin, C.M. Ko, Phys. Rev. Lett. 55, 2661 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    Q. Li, J.Q. Wu, C.M. Ko, Phys. Rev. C 39, 849 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    O. Buss et al., Phys. Rep. 512, 1124 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Aichelin, Phys. Rep. 202, 233 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    K. Niita et al., Phys. Rev. C 52, 2620 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    Ch. Hartnack et al., Eur. Phys. J. A 1, 151 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    J.-C. David, Eur. Phys. J. A 51, 68 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    S. Pedoux, J. Cugnon, Nucl. Phys. A 866, 16 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    A. Boudard et al., Phys. Rev. C 87, 014606 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    D. Mancusi et al., Phys. Rev. C 90, 054602 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    D. Mancusi et al., Eur. Phys. J. A 53, 80 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    A. Kupsc, A. Wirzba, J. Phys.: Conf. Ser. 335, 012017 (2011)Google Scholar
  19. 19.
    C. Gatto, B. Fabela Enriquez, M.I. Pedraza Morales, Proc. Sci. ICHEP2016, 812 (2016)Google Scholar
  20. 20.
    W.B. Richards et al., Phys. Rev. D 1, 10 (1970)ADSCrossRefGoogle Scholar
  21. 21.
    S. Prakhov et al., Phys. Rev. C 72, 015203 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    R.M. Brown et al., Nucl. Phys. B 153, 89 (1979)ADSCrossRefGoogle Scholar
  23. 23.
    W. Deinet et al., Nucl. Phys. B 11, 495 (1969)ADSCrossRefGoogle Scholar
  24. 24.
    J. Durand et al., Phys. Rev. C 78, 025204 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    J. Cugnon et al., Phys. Rev. C 41, 1701 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    A. Baldini, Total Cross Sections for Reactions of High Energy Particles, in Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, Vol. 12 (Springer-Verlag, Berlin, 1988)Google Scholar
  27. 27.
    H. Calén et al., Phys. Rev. C 58, 2667 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    C. Hanhart et al., Phys. Rep. 397, 155 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    A. Sibirtsev et al., Z. Phys. A 358, 357 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    J. Smyrski et al., Phys. Lett. B 474, 182 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    H. Calén et al., Phys. Lett. B 366, 39 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    A.M. Bergdolt et al., Phys. Rev. D 48, R2969 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    F. Hibou et al., Phys. Lett. B 438, 41 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    E. Chiavassa et al., Phys. Lett. B 322, 270 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    H. Calén et al., Phys. Rev. Lett. 79, 2642 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    H. Calén et al., Phys. Rev. Lett. 80, 2069 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    A. Sibirtsev et al., Nucl. Phys. A 604, 455 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    A. Rustamov et al., AIP Conf. Proc. 1257, 736 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    S. Barsov et al., Eur. Phys. J. A 21, 521 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    F. Hibou et al., Phys. Rev. Lett. 83, 492 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    S. Abd-El-Samad et al., Phys. Lett. B 522, 16 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    H. Kamano et al., Phys. Rev. C 88, 035209 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    G.N. Dudkin et al., JETP Lett. 23, 77 (1976)ADSGoogle Scholar
  44. 44.
    G.I. Lykasov et al., Eur. Phys. J. A 6, 71 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    N.C. Debenham et al., Phys. Rev. D 12, 2545 (1975)ADSCrossRefGoogle Scholar
  46. 46.
    T. Vetter et al., Phys. Lett. B 263, 153 (1991)ADSCrossRefGoogle Scholar
  47. 47.
    J. Cugnon et al., Phys. Rev. C 56, 2431 (1997)ADSCrossRefGoogle Scholar
  48. 48.
    Particle Data Group, Chin. Phys. C 38, 090001 (2014)CrossRefGoogle Scholar
  49. 49.
    X.H. Zhong et al., Phys. Rev. C 73, 015205 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    H. Nagahiro et al., Nucl. Phys. A 761, 92 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    S. Friedrich et al., Phys. Lett. B 736, 26 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    V. Metag et al., EPJ Web of Conferences 134, 03003 (2017)CrossRefGoogle Scholar
  53. 53.
    M.G. Catanesi et al., Phys. Rev. C 77, 055207 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    Ye.S. Golubeva et al., Nucl. Phys. A 562, 389 (1993)ADSCrossRefGoogle Scholar
  55. 55.
    G. Agakishiev et al., Phys. Rev. C 88, 024904 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Irfu, CEAUniversité Paris-SaclayGif-sur-YvetteFrance
  2. 2.University of LiègeAGO DepartmentLiège 1Belgium
  3. 3.Center for Space and HabitabilityUniversität BernBernSwitzerland
  4. 4.Den-Service d’étude des réacteurs et de mathématiques appliquées (SERMA), CEAUniversité Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations