Flexoelectric effect in functionally graded materials: A numerical study

  • Anuruddh Kumar
  • Raj Kiran
  • Rajeev Kumar
  • Satish Chandra Jain
  • Rahul Vaish
Regular Article
  • 15 Downloads

Abstract.

The flexoelectric effect has been observed in a wide range of dielectric materials. However, the flexoelectric effect can only be induced using the strain gradient. Researchers have examined the flexoelectricity using non-uniform loading (cantilever type) or non-uniform shape in dielectric materials, which may be undesirable in many applications. In the present article, we demonstrate induced flexoelectricity in dielectric functionally graded materials (FGMs) due to non-uniform Youngs’s modulus along the thickness. To examine flexoelectricity, Ba0.6Sr0.4TiO3 (BST) and polyvinylidene fluoride (PVDF) were used to numerically simulate the performance of FGMs. 2D simulation suggests that output voltage can drastically enhance for optimum grading index of FGMs.

References

  1. 1.
    D. Damjanovic, J. Appl. Phys. 82, 1788 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoc, J. Appl. Phys. 98, 11 (2005)CrossRefGoogle Scholar
  3. 3.
    L. Cross, S. Jang, R. Newnham, S. Nomura, K. Uchino, Ferroelectrics 23, 187 (1980)CrossRefGoogle Scholar
  4. 4.
    F. Li, L. Jin, Z. Xu, S. Zhang, Appl. Phys. Rev. 1, 011103 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    L.E. Cross, J. Mater. Sci. 41, 53 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    G. Catalan, A. Lubk, A. Vlooswijk, E. Snoeck, C. Magen, A. Janssens, G. Rispens, G. Rijnders, D. Blank, B. Noheda, Nat. Mater. 10, 963 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    R. Resta, Phys. Rev. E 105, 127601 (2010)ADSGoogle Scholar
  8. 8.
    S.-B. Choi, G.-W. Kim, J. Phys. D 50, 075502 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    L. Shu, X. Wei, T. Pang, X. Yao, C. Wang, J. Appl. Phys. 110, 104106 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    X. Jiang, W. Huang, S. Zhang, Nano Energy 2, 1079 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Majdoub, P. Sharma, T. Çağin, Phys. Rev. B 78, 121407 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    J.M. Gregg, Science 336, 41 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    S.M. Kogan, Sov. Phys. Solid State 5, 2069 (1964)Google Scholar
  14. 14.
    A. Tagantsev, Phys. Rev. B 34, 5883 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    S. Baskaran, X. He, Q. Chen, J.Y. Fu, Appl. Phys. Lett. 98, 242901 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    B. Chu, D. Salem, Appl. Phys. Lett. 101, 103905 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    M. Majdoub, P. Sharma, T. Cagin, Phys. Rev. B 77, 125424 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    F. Ebrahimi, M.R. Barati, Arab. J. Sci. Eng. 43, 1423 (2018)CrossRefGoogle Scholar
  19. 19.
    F. Ebrahimi, M.R. Barati, Nanomater. Nanotechnol. (2017)  https://doi.org/10.1177/1847980417713106
  20. 20.
    F. Ebrahimi, M.R. Barati, Eur. Phys. J. Plus 132, 19 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Khoshgoftar, A.G. Arani, M. Arefi, Smart Mater. Struct. 18, 115007 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    W. Chen, H. Ding, Acta Mech. 153, 207 (2002)CrossRefGoogle Scholar
  23. 23.
    J. Qiu, J. Tani, T. Ueno, T. Morita, H. Takahashi, H. Du, Smart Mater. Struct. 12, 115 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    J. Yang, H. Xiang, Smart Mater. Struct. 16, 784 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Z. Zhong, T. Yu, Smart Mater. Struct. 15, 1404 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    S. Zhong, Z.-G. Ban, S. Alpay, J. Mantese, Appl. Phys. Lett. 89, 142913 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    R. Nath, S. Zhong, S. Alpay, B. Huey, M. Cole, Appl. Phys. Lett. 92, 012916 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    J. Reddy, Z.-Q. Cheng, J. Appl. Mech. 68, 234 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    V.P. Nguyen, C. Anitescu, S.P. Bordas, T. Rabczuk, Math. Comput. Simul. 117, 89 (2015)CrossRefGoogle Scholar
  30. 30.
    S.-B. Choi, G.-W. Kim, J. Phys. D 50, 075502 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    H. Ghasemi, H.S. Park, T. Rabczuk, Comput. Methods Appl. Mech. Eng. 313, 239 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anuruddh Kumar
    • 1
  • Raj Kiran
    • 1
  • Rajeev Kumar
    • 1
  • Satish Chandra Jain
    • 1
  • Rahul Vaish
    • 1
  1. 1.School of EngineeringIndian Institute of Technology MandiHimachal PradeshIndia

Personalised recommendations