Mechanistic investigation for the axisymmetric transport of nanocomposite molybdenum disulfide-silicon dioxide in ethylene glycol and sphericity assessment of nanoscale particles
- 19 Downloads
Abstract.
The present paper provides a comparative analysis between nano and hybrid nanofluid axisymmetric flow towards a radially stretching porous surface along with heat transfer mechanism in the presence of magnetic force and internal heat source/sink. The effect of various shapes of nanoparticles is also taken into account. The physical flow problem is modeled and presented in cylindrical coordinates. Governing nonlinear equations are converted into a system of differential equations by using the similarity approach. Numerical results are computed by means of a well-established and stable numerical procedure. The main implication of this research is the influence of nanoparticle shapes, internal heating and applied magnetic field on fluid flow and heat transfer. Computational results are extracted out with the help of mathematics software MATLAB. One of the key findings of the present analysis is the fact that the maximum temperature is achieved for lamina-shaped SiO2 and MoS2-SiO2 nanoparticles and the lowest temperature is attained in the case of sphere-shaped nanoparticles.
References
- 1.B.C. Sakiadis, AIChE J. 7, 26 (1961)CrossRefGoogle Scholar
- 2.A. Malvandi, F. Hedayati, D.D. Ganji, Alex. Eng. J. (2017) https://doi.org/10.1016/j.aej.2017.08.010
- 3.A. Malvandi, F. Hedayati, M.R.H. Nobari, J. Appl. Fluid Mech. 7, 375 (2014)Google Scholar
- 4.A. Malvandi, F. Hedayati, D.D. Ganji, Powder Technol. 253, 377 (2014)CrossRefGoogle Scholar
- 5.A. Malvandi, F. Hedayati, D.D. Ganji, Y. Rostamiyan, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 228, 1175 (2013)CrossRefGoogle Scholar
- 6.F. Selimefendigil, H.F. Öztop, Int. J. Mech. Sci. 118, 113 (2016)CrossRefGoogle Scholar
- 7.F. Selimefendigil, H. Öztop, Int. J. Heat Mass Transfer 98, 40 (2016)CrossRefGoogle Scholar
- 8.P.D. Ariel, Int. J. Eng. Sci. 39, 529 (2001)CrossRefGoogle Scholar
- 9.T. Hayat, M. Sajid, Int. J. Heat Mass Transfer 50, 75 (2007)CrossRefGoogle Scholar
- 10.M. Sajid, I. Ahmad, T. Hayat, M. Ayub, Commun. Nonlinear Sci. Numer. Simul. 13, 2193 (2008)ADSCrossRefGoogle Scholar
- 11.I. Ahmad, M. Sajid, T. Hayat, M. Ayub, Comput. Math. Appl. 56, 1351 (2008)MathSciNetCrossRefGoogle Scholar
- 12.B. Sahoo, Appl. Math. Mech. 31, 159 (2010)CrossRefGoogle Scholar
- 13.M. Mustafa, T. Hayat, A. Alsaedi, Curr. Nanosci. 8, 328 (2012)ADSCrossRefGoogle Scholar
- 14.J. Buongiorno, ASME J. Heat Transf. 128, 240 (2006)CrossRefGoogle Scholar
- 15.F. Selimefendigil, H. Öztop, Adv. Powder Technol. 26, 1663 (2015)CrossRefGoogle Scholar
- 16.T. Hayat, A. Shafiq, A. Alsaedi, M. Awais, Comput. Fluids 86, 103 (2013)MathSciNetCrossRefGoogle Scholar
- 17.M. Mustafa, J.A. Khan, T. Hayat, A. Alsaedi, Int. J. Non-Linear Mech. 71, 22 (2015)ADSCrossRefGoogle Scholar
- 18.A. Shahzad, J. Ahmed, M. Khan, Alex. Eng. J. 55, 2423 (2016)CrossRefGoogle Scholar
- 19.S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, ASME, San Francisco, USA (1995) (ASME, 1995) pp. 99--105, FED 231/MD 66Google Scholar
- 20.E. Abu-Nada, Z. Masoud, H.F. Oztop, A. Campo, Int. J. Therm. Sci. 49, 479 (2010)CrossRefGoogle Scholar
- 21.A.V. Kuznetsov, D.A. Nield, Int. J. Therm. Sci. 288, 243 (2010)CrossRefGoogle Scholar
- 22.W.A. Khan, I. Pop, Int. J. Heat Mass Transfer 53, 2477 (2010)CrossRefGoogle Scholar
- 23.N. Bachok, A. Ishak, I. Pop, Acta. Mech. Sin. 28, 34 (2012)ADSMathSciNetCrossRefGoogle Scholar
- 24.P.S. Reddy, A.J. Chamkha, Adv. Power Technol. 13, 39 (2015)Google Scholar
- 25.R. Eid Mohamed, J. Mol. Liq. 220, 718 (2016)CrossRefGoogle Scholar
- 26.M.J. Nine, B. Munkhbayar, M.S. Rahman, H. Chung, H. Jeong, Math. Chem. Phys. 141, 636 (2013)CrossRefGoogle Scholar
- 27.D. Toghraie, V.A. Chaharsoghi, M. Afrand, J. Therm. Anal. Calorim 125, 527 (2016)CrossRefGoogle Scholar
- 28.F. Selimefendigil, H. Öztop, Int. J. Heat Mass Transfer 98, 40 (2016)CrossRefGoogle Scholar
- 29.Z. Iqbal, E. Azhar, E.N. Maraj, Physica E 91, 128 (2017)ADSCrossRefGoogle Scholar
- 30.F. Selimefendigil, H. Öztop, J. Magn. & Magn. Mater. 417, 327 (2016)ADSCrossRefGoogle Scholar
- 31.Z. Iqbal, E.N. Maraj, E. Azhar, Z. Mehmood, Adv. Powder Technol. 28, 2332 (2017)CrossRefGoogle Scholar
- 32.F. Selimefendigil, H. Öztop, Int. J. Heat Mass Transfer 108, 156 (2017)CrossRefGoogle Scholar
- 33.Z. Iqbal, Z. Mehmood, E. Azhar, E.N. Maraj, J. Mol. Liq. 234, 296 (2017)CrossRefGoogle Scholar
- 34.F. Selimefendigil, H. Öztop, Eur. J. Mech. B/Fluids 61, 77 (2017)ADSMathSciNetCrossRefGoogle Scholar
- 35.Z. Iqbal, N.S. Akbar, E. Azhar, E.N. Maraj, Alex. Eng. J. (2017) https://doi.org/10.1016/j.aej.2017.03.047
- 36.F. Selimefendigil, H. Öztop, J. Therm. Sci. Eng. Appl. 9, 021016 (2017)CrossRefGoogle Scholar
- 37.F. Selimefendigil, H. Öztop, Int. Commun. Heat Mass Transfer 89, 211 (2017)CrossRefGoogle Scholar
- 38.J. Sarkar, P. Ghosh, A. Adil, Renew. Sustain. Energy Rev. 43, 164 (2015)CrossRefGoogle Scholar
- 39.H. Xie, B. Jiang, B. Liu, Q. Wang, J. Xu, F. Pan, Nanoscale Res. Lett. 11, 329 (2016)ADSCrossRefGoogle Scholar
- 40.R. Yan, J.R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A.R.H. Walker, H.G. Xing, ACS Nano 8, 986 (2014)CrossRefGoogle Scholar
- 41.S.F.A. Talib, W.H. Azmi, I. Zakaria, W.A.N.W. Mohamed, A.M.I. Mamat, H. Ismail, W.R.W. Daud, Energy Proc. 79, 366 (2015)CrossRefGoogle Scholar
- 42.S.P.A. Devi, S.S.U. Devi, Int. J. Non-linear Sci. Numer. Simul. 17, 249 (2016)Google Scholar
- 43.Z. Iqbal, E.N. Maraj, E. Azhar, Z. Mehmood, J. Taiwan Inst. Chem. Eng. 81, 150 (2017)CrossRefGoogle Scholar