On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams
- 29 Downloads
Abstract.
In this paper, the buckling response of nanobeams on the basis of the Euler-Bernoulli beam model with the von Kármán geometrical nonlinearity using the modified couple stress theory is investigated under various types of thermal loading and electrical and magnetic fields. The modified couple stress theory, used in this paper, is capable to consider the higher-order electro-mechanical coupling effects besides size effects. The governing equations and boundary conditions are derived using minimum potential energy principle. The nanobeam is assumed to be under two types of thermal loading, uniform and linear, along thickness direction. The buckling response of nanobeams is studied using the Galerkin method and the effects of different parameters, such as size effect, length and thickness, on the critical buckling temperature are shown. The buckling behavior of nanobeam is illustrated significantly size-dependent particularly with an increase in thickness and decrease in length.
References
- 1.C.W. Nan, Phys. Rev. B 50, 6082 (1994)ADSCrossRefGoogle Scholar
- 2.S. Razavi, A. Shooshtari, Compos. Struct. 119, 377 (2015)CrossRefGoogle Scholar
- 3.C. Liu, L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, Compos. Struct. 106, 167 (2013)CrossRefGoogle Scholar
- 4.F. Ebrahimi, E. Salari, Smart Mater. Struct. 24, 125007 (2015)ADSCrossRefGoogle Scholar
- 5.F. Ebrahimi, A. Rastgo, Thin-Walled Struct. 46, 1402 (2008)CrossRefGoogle Scholar
- 6.A. Kumaravel, J. Jones Praveen, R. Sethuraman, A. Arockiarajan, Appl. Mech. Mater. 592, 2071 (2014)CrossRefGoogle Scholar
- 7.S. Xu, Y. Shi, S.G. Kim, Nanotechnology 17, 4497 (2006)ADSCrossRefGoogle Scholar
- 8.F. Mehralian, Y.T. Beni, R. Ansari, Int. J. Mech. Sci. 119, 155 (2016)CrossRefGoogle Scholar
- 9.N. Ebrahimi, Y.T. Beni, Steel Compos. Struct. 22, 1301 (2016)CrossRefGoogle Scholar
- 10.F. Mehralian, Y.T. Beni, R. Ansari, Compos. Struct. 152, 45 (2016)CrossRefGoogle Scholar
- 11.H. Razavi, A.F. Babadi, Y.T. Beni, Compos. Struct. 160, 1299 (2017)CrossRefGoogle Scholar
- 12.S.F. Dehkordi, Y.T. Beni, Int. J. Mech. Sci. 128, 125 (2017)CrossRefGoogle Scholar
- 13.F. Mehralian, Y.T. Beni, J. Braz. Soc. Mech. Sci. Eng. 40, 27 (2018)CrossRefGoogle Scholar
- 14.R. Ansari, H. Rouhi, S. Sahmani, Physica E 44, 373 (2011)ADSCrossRefGoogle Scholar
- 15.A. Daneshmehr, A. Rajabpoor, A. Hadi, Int. J. Eng. Sci. 95, 23 (2015)CrossRefGoogle Scholar
- 16.L.L. Ke, Y.S. Wang, Smart Mater. Struct. 21, 025018 (2012)ADSCrossRefGoogle Scholar
- 17.Y.T. Beni, M. Abadyan, A. Koochi, Phys. Scr. 84, 065801 (2011)ADSCrossRefGoogle Scholar
- 18.H. Zeighampour, Y.T. Beni, F. Mehralian, Acta Mech. 226, 2607 (2015)MathSciNetCrossRefGoogle Scholar
- 19.H. Zeighampour, Y.T. Beni, Arch. Appl. Mech. 89, 539 (2015)CrossRefGoogle Scholar
- 20.F. Kheibari, Y.T. Beni, Mater. Des. 114, 572 (2017)CrossRefGoogle Scholar
- 21.R. Omidian, Y.T. Beni, F. Mehralian, Eur. Phys. J. Plus 132, 481 (2017)CrossRefGoogle Scholar
- 22.R.A. Toupin, Arch. Ration. Mech. Anal. 11, 385 (1962)CrossRefGoogle Scholar
- 23.R.D. Mindlin, H.F. Tiersten, Arch. Ration. Mech. Anal. 11, 415 (1962)CrossRefGoogle Scholar
- 24.W.T. Koiter, Proc. K. Ned. Akad. Wet. 67, 17 (1964)Google Scholar
- 25.Y.T. Beni, I. Karimipöur, M. Abadyan, J. Mech. Sci. Technol. 28, 3749 (2014)CrossRefGoogle Scholar
- 26.A. Anthoine, Int. J. Solids Struct. 37, 1003 (2000)CrossRefGoogle Scholar
- 27.M. Mohammad-Abadi, A.R. Daneshmehr, Int. J. Eng. Sci. 74, 1 (2014)CrossRefGoogle Scholar
- 28.S.K. Park, X.L. Gao, J. Micromech. Microeng. 16, 2355 (2006)ADSCrossRefGoogle Scholar
- 29.J.N. Reddy, J. Mech. Phys. Solids 59, 2382 (2011)ADSMathSciNetCrossRefGoogle Scholar
- 30.Z. Belabed, M.S.A. Houari, A. Tounsi, S.R. Mahmoud, O.A. Bég, Composites Part B: Eng. 60, 274 (2014)CrossRefGoogle Scholar
- 31.Y.T. Beni, J. Mech. 33, 289 (2017)CrossRefGoogle Scholar
- 32.Y. Tadi Beni, J. Intell. Mater. Syst. Struct. 27, 2199 (2016)CrossRefGoogle Scholar
- 33.A. Nateghi, M. Salamat-talab, Compos. Struct. 96, 97 (2013)CrossRefGoogle Scholar
- 34.B. Akgöz, Ö. Civalek, Int. J. Eng. Sci. 85, 90 (2014)CrossRefGoogle Scholar
- 35.L.L. Ke, Y.S. Wang, Physica E 63, 52 (2014)ADSCrossRefGoogle Scholar
- 36.L. Xu, S. Shen, Int. J. Appl. Mech. 5, 1350015 (2013)CrossRefGoogle Scholar
- 37.Y.T. Beni, Mech. Res. Commun. 75, 67 (2016)CrossRefGoogle Scholar
- 38.Y. Ootao, Y. Tanigawa, Compos. Struct. 68, 471 (2005)CrossRefGoogle Scholar
- 39.A.A. Khdeir, Acta Mech. 149, 201 (2001)CrossRefGoogle Scholar
- 40.F. Mehralian, Y.T. Beni, J. Mech. Sci. Technol. 31, 1773 (2017)CrossRefGoogle Scholar
- 41.M.A.A. Meziane, H.H. Abdelaziz, A. Tounsi, J. Sandwich Struct. Mater. 16, 293 (2014)CrossRefGoogle Scholar
- 42.F.A.C.M. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Int. J. Solids Struct. 39, 2731 (2002)CrossRefGoogle Scholar
- 43.D.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, J. Mech. Phys. Solids 51, 1477 (2003)ADSCrossRefGoogle Scholar
- 44.X.F. Li, B.L. Wang, K.Y. Lee, J. Appl. Phys. 105, 074306 (2009)ADSCrossRefGoogle Scholar
- 45.K.A. Lazopoulos, A.K. Lazopoulos, Eur. J. Mech. A/Solids 29, 837 (2010)ADSCrossRefGoogle Scholar
- 46.L.E. Cross, J. Mater. Sci. 41, 53 (2006)ADSCrossRefGoogle Scholar
- 47.Y. Kiani, S. Taheri, M.R. Eslami, J. Therm. Stresses 34, 835 (2011)CrossRefGoogle Scholar
- 48.Y. Kiani, M.R. Eslami, Int. J. Mech. Mater. Des. 6, 229 (2010)CrossRefGoogle Scholar
- 49.A. Tounsi, A. Semmah, A.A. Bousahla, J. Nanomech. Micromech. 3, 37 (2013)CrossRefGoogle Scholar