Advertisement

Analytical solution of Bohr Hamiltonian and extended form of sextic potential using bi-confluent Heun functions

  • H. SobhaniEmail author
  • A. N. Ikot
  • H. Hassanabadi
Regular Article

Abstract.

In this article, the Bohr Hamiltonian is analytically solved by considering the extended form of the sextic potential. This kind of potential in special cases can recover Davidson, sextic and harmonic potentials. To obtain the analytical solution of the considered system, we used bi-confluent Heun functions. Furthermore, some numerical results are calculated according to the results for some isotopes of xenon and platinum.

References

  1. 1.
    A. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk. 26, 14 (1952)MathSciNetGoogle Scholar
  2. 2.
    A. Bohr, B.R. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk. 27, 16 (1953)Google Scholar
  3. 3.
    F. Iachello, Phys. Rev. Lett. 85, 3580 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    F. Iachello, Phys. Rev. Lett. 87, 052502 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    M.A. Caprio, Phys. Rev. C 72, 054323 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    L. Fortunato, Eur. Phys. J. A 26, 1 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    D. Bonatsos, D. Lenis, N. Minkov, D. Petrellis, P.P. Raychev, P.A. Terziev, Phys. Lett. B 584, 40 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    D. Bonatsos, P.E. Georgoudis, D. Lenis, N. Minkov, C. Quesne, Phys. Rev. C 83, 044321 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    D. Bonatsos, P.E. Georgoudis, N. Minkov, D. Petrellis, C. Quesne, Phys. Rev. C 88, 034316 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    D. Bonatsos, D. Lenis, D. Petrellis, P.A. Terziev, I. Yigitoglu, Phys. Lett. B 632, 238242 (2006)CrossRefGoogle Scholar
  11. 11.
    L. Naderi, H. Hassanabadi, H. Sobhani, Int. J. Mod. Phys. E 25, 1650029 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    H. Sobhani, H. Hassanabadi, Phys. Lett. B 760, 1 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    P. Buganu, R. Budaca, Phys. Rev. C 91, 014306 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    P. Buganu, R. Budaca, J. Phys. G: Nucl. Part. Phys. 42, 105106 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    D. Bonatsos, D. Lenis, D. Petrellis, P.A. Terziev, Phys. Lett. B 588, 172 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    P. Cejnar, J. Jolie, R.F. Casten, Rev. Mod. Phys. 82, 2155 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    D. Bonatsos, D. Lenis, D. Petrellis, P.A. Terziev, I. Yigitoglu, Phys. Lett. B 621, 102 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    R. Budaca, P. Buganu, M. Chabab, A. Lahbas, M. Oulne, Ann. Phys. 375, 65 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    A. Ishkhanyan, K.A. Suominen, J. Phys. A: Math. Gen. 34, 6301 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    I. Yigitoglu, D. Bonatsos, Phys. Rev. C 83, 014303 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    M. Kanbe, K. Kitao, Nucl. Data Sheets 94, 227 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    B. Singh, Nucl. Data Sheets 93, 33 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    Yu. Khazov, A.A. Rodionov, S. Sakharov, B. Singh, Nucl. Data Sheets 104, 497 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    C.M. Baglin, Nucl. Data Sheets 113, 1871 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    C.M. Baglin, Nucl. Data Sheets 107, 1531 (2006)CrossRefGoogle Scholar
  26. 26.
    Z. Chunmei, W. Gongqing, T. Zhenlan, Nucl. Data Sheets 83, 145 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    A.S. Davydov, G.F. Filippov, Nucl. Phys. 8, 237 (1958)CrossRefGoogle Scholar
  28. 28.
    A.S. Davydov, V.S. Rostovsky, Nucl. Phys. 12, 58 (1959)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Physics DepartmentShahrood University of TechnologyShahroodIran
  2. 2.Theoretical Physics Group, Department of PhysicsUniversity of Port HarcourtPort HarcourtNigeria

Personalised recommendations