The European Physical Journal H

, Volume 44, Issue 1, pp 37–46 | Cite as

The origin of computational statistical mechanics in France

  • D. LevesqueEmail author
  • J. P. Hansen


The two main methodologies of computational Statistical Mechanics, namely the stochastic Monte Carlo and the deterministic Molecular Dynamic methods, were developed in the USA in the mid 1950’s. In the present paper we show how these “computer experiments” migrated to Europe in the 60s, and first bloomed at the Orsay Science Faculty, before spreading throughout Europe. Collaborations between the Orsay group, led by Loup Verlet, and pioneering groups in the USA and Europe are pointed out. Finally it is shown how the celebrated Verlet algorithm for the integration of classical equations of motion can be traced back to Isaac Newton.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alder B.J. and Wainwright T.E. 1957. Phase Transition for a Hard Sphere System. J. Chem. Phys. 27: 1208–1209 ADSCrossRefGoogle Scholar
  2. 2.
    Alder B.J. and Wainwright T.E. 1959. Studies in Molecular Dynamics. I. General Method. J. Chem. Phys. 31: 459–466 ADSMathSciNetGoogle Scholar
  3. 3.
    Alder B.J. and Wainwright T.E. 1967. Velocity Autocorrelation for Hard Spheres. Phys. Rev. Lett. 18: 988–990 ADSCrossRefGoogle Scholar
  4. 4.
    Alder B.J., Weis J.J. and Strauss H.L. 1973. Depolarization of Light in Atomic Fluids. Phys. Rev. A 7: 281–284 ADSCrossRefGoogle Scholar
  5. 5.
    Barojas J., Levesque D. and Quentrec B. 1973. Simulation of Diatomic Homonuclear Liquids. Phys. Rev. A 7: 1092–1105 ADSCrossRefGoogle Scholar
  6. 6.
    Baxter R.J. 1968. Ornstein-Zernike Relation for a Disordered Fluid. Aust. J. Phys. 21: 563–569 ADSCrossRefGoogle Scholar
  7. 7.
    Binder K. and Rauch H. 1968. Calculation of spin-correlation functions in a ferromagnet with a Monte Carlo method. Phys. Lett. A 27: 247–248 ADSCrossRefGoogle Scholar
  8. 8.
    Cooley J.W. and Tukey J.W. 1965. An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation 19: 297–301.s MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Drell S.D. and Verlet L. 1955. Multiple Scattering Corrections in π± Deuteron Scattering. Phys. Rev. 99: 849–857 ADSCrossRefGoogle Scholar
  10. 10.
    Frenkel D. and Mulder B. 1985. The Hard Ellipsoid of Revolution Fluid: I. Monte-Carlo Simulations. Mol. Phys. 55: 1171–1192 ADSCrossRefGoogle Scholar
  11. 11.
    Hansen J.P. and Levesque D. 1968. Ground State of Solid Helium-4 and -3. Phys. Rev. 165: 293–300 ADSCrossRefGoogle Scholar
  12. 12.
    Hansen J.P., Jancovici B. and Schiff D. 1972. Phase Diagram of a Charged Bose Gas. Phys. Rev. Lett. 29: 991–995 ADSCrossRefGoogle Scholar
  13. 13.
    Hansen J.P. 1973. Statistical Mechanics of Dense Ionized Matter. I. Equilibrium Properties of Classical One-component Plasma. Phys. Rev. A 8: 3096–3109 ADSCrossRefGoogle Scholar
  14. 14.
    Hansen J.P., McDonald I.R. and Pollock E.L. 1975. Statistical Mechanics of Dense Ionized Matter. III. Dynamical Properties of Classical One-component Plasma. Phys. Rev. A 21: 1025–1039 ADSCrossRefGoogle Scholar
  15. 15.
    Jastrow R. 1955. Many-Body Problem with Strong Forces. Phys. Rev. 98: 1479–1484 ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Kalos M.H., Levesque D. and Verlet, L. 1974. Helium at Zero Temperature with Hard Sphere and Other Forces. Phys. Rev. A 9: 2178–2195 ADSCrossRefGoogle Scholar
  17. 17.
    Lebowitz J., Percus J.K. and Verlet L. 1967. Ensemble Dependence of Fluctuations with Application to Machine Computations. Phys. Rev. 153: 250–254 ADSCrossRefGoogle Scholar
  18. 18.
    Levesque D., Tu Khiet, Schiff D. and Verlet L. 1965. On the Ground State of Liquid and Solid He4 at Zero Temperature. Preprint (unpublished) Google Scholar
  19. 19.
    Levesque D. and Ashurst W. 1974. Long Time Behavior of the Velocity Autocorrelation Function for a Fluid of Soft Repulsive Particles. Phys. Rev. Lett. 33: 277–280 ADSCrossRefGoogle Scholar
  20. 20.
    Mareschal M. 2018. Early Years of Computational Statistical Mechanics. Eur. Phys. J. H. 43: 293–302 CrossRefGoogle Scholar
  21. 21.
    McDonald I.R. and Singer K. 1967. Calculation of thermodynamic properties of liquid argon from Lennard-Jones parameters by a Monte Carlo method. Disc. Faraday Soc 43: 40–49 CrossRefGoogle Scholar
  22. 22.
    McMillan W.E. 1965. Ground State of Liquid He4. Phys. Rev. A 138: 442–452 ADSCrossRefGoogle Scholar
  23. 23.
    Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H. and Teller E. 1953. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 23: 1087–1093 ADSCrossRefGoogle Scholar
  24. 24.
    Newton I. 1883, Philosophiae naturalis principia mathematica. Glasguae, Impensis T.T et J. Tegg, Londini. ( Google Scholar
  25. 25.
    Onsager L. 1944. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition. Phys. Rev. 65: 117–149 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ornstein L.S. and Zernike F. 1914. Accidental deviations of density and opalescence at the critical point of a single substance. Royal Netherlands Academy of Arts and Sciences Proceedings 17: 793–806 Google Scholar
  27. 27.
    Percus J.K. and Yevick G.J. 1958. Analysis of Classical Statistical Mechanics by Means of Collective Coordinates. Phys. Rev. 110: 1–13 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Principia Translation. 1934, Newton’s Principia Motte’s translation 1729 revised by Florian Cajori, University of California Press, Berkeley, Los Angeles, London, p. 40–41: For suppose the time to be divided into equal parts, and in the first part of that time let the body by its innate force describe the right line AB. In the second part of that time, the same would (by Law "i"), if not hindered, proceed directly to c, along the line Bc equal to AB; so that by the radii AS, BS, cS, drawn to the centre, the equal areas ASB, BSc, would be described. But when the body is arrived at B, suppose that a centripetal force acts at once with a great impulse, and, turning aside the body from the right line Bc, compels it afterwards to continue its motion along the right line BC. Draw cC parallel to BS meeting BC in C; andat the end of the second part of the time, the body (by Cor. "i" of the Laws) will befound in C, ... Google Scholar
  29. 29.
    Rahman A. 1964. Correlations in the Motion of Atoms in Liquid Argon. Phys. Rev. A 136: 405–409 ADSCrossRefGoogle Scholar
  30. 30.
    Rosenbluth M.N. and Rosenbluth A.W. 1955. Monte Carlo Calculation of the Average Extension of Molecular Chains. J. Chem. Phys. 23: 356–360 ADSCrossRefGoogle Scholar
  31. 31.
    Stauffer D. 1985. Introduction to Percolation Theory. Taylor and Francis, London Google Scholar
  32. 32.
    Schiff D. and Verlet L. 1967. Ground State of Liquid Helium-4 and Helium-3. Phys. Rev. 160: 208–219 ADSCrossRefGoogle Scholar
  33. 33.
    Schiff D. 1969. Computer “Experiments” on Liquid Metals. Phys. Rev. 186: 151–160 ADSCrossRefGoogle Scholar
  34. 34.
    Thiele E. J. 1963. Equation of State for Hard Spheres. J. Chem. Phys. 39: 474–479 ADSCrossRefGoogle Scholar
  35. 35.
    Verlet L. 1960. On the theory of classical fluids. Il Nuovo Cimento 18: 77–101 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Verlet L. and Levesque D. 1962. On the theory of classical fluids II. Physica 28: 1124–1142 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Verlet L. 1964. On the theory of classical fluids-III. Physica 30: 95–104 ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Verlet L. 1965. On the theory of classical fluids-IV. Physica 31: 959–966 ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Verlet L. 1967. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 159: 98–104 Google Scholar
  40. 40.
    Verlet L. and Schiff D. 1974. Tribune libre : Faut-il continuer la recherche scientifique ? La Recherche nov. 1974: 924 Google Scholar
  41. 41.
    Verlet L. 1993. La Malle de Newton, Bibliothèque des Sciences Humaines, Gallimard, Paris. Google Scholar
  42. 42.
    Verlet L. 2007. Chimères et Paradoxes, Les Éditions du Cerf, Paris. Google Scholar
  43. 43.
    Vieillard-Baron J. 1972. Phase Transitions of the Classical Hard-Ellipse System. J. Chem. Phys. 56: 4729–4744 ADSCrossRefGoogle Scholar
  44. 44.
    Wertheim M.S. 1963. Exact Solution of the Percus-Yevick Integral Equation for Hard Spheres. Phys. Rev. Lett. 10: 321–323 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Wood W.W. and Parker F.R. 1957a. Monte Carlo Equation of State of Molecules Interacting with the Lennard-Jones Potential. I. A Supercritical Isotherm at about Twice the Critical Temperature. J. Chem. Phys. 27: 720–734 Google Scholar
  46. 46.
    Wood W.W. and Jacobson J.D. 1957b. Preliminary Results from a Recalculation of the Monte Carlo Equation of State of Hard Spheres. J. Chem. Phys. 27: 1207–1208 ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique, Bâtiment 210Université Paris-SaclayOrsayFrance
  2. 2.Laboratoire PhénixUniversité Pierre et Marie CurieParisFrance
  3. 3.Department of ChemistryUniversity of CambridgeCambridgeUK

Personalised recommendations