Advertisement

The traveling-wave tube in the history of telecommunication

  • Damien F. G. Minenna
  • Frédéric André
  • Yves Elskens
  • Jean-François Auboin
  • Fabrice Doveil
  • Jérôme Puech
  • Élise Duverdier
Article
  • 1 Downloads

Abstract

The traveling-wave tube is a critical subsystem for satellite data transmission. Its role in the history of wireless communications and in the space conquest is significant, but largely ignored, even though the device remains widely used nowadays. This paper presents, albeit non-exhaustively, circumstances and contexts that led to its invention, and its part in the worldwide (in particular in Europe) expansion of TV broadcasting via microwave radio relays and satellites. We also discuss its actual contribution to space applications and its conception. The originality of this paper comes from the wide period covered (from first slow-wave structures in 1889 to present space projects) and from connection points made between this device and commercial exploitations. The appendix deals with an intuitive pedagogical description of the wave–particle interaction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    American Radio History website, https://doi.org/www.americanradiohistory.com.
  2. 2.
    Angel Y. and Riche P. 1952. “La liaison de télévision Paris-Lille”, Onde Élec., 32(301-302): 152–157. Google Scholar
  3. 3.
    Antoni M., Elskens Y. and Escande D. F. 1998. “Explicit reduction of N-body dynamics to self-consistent particle-wave interaction”, Phys. Plasmas, 5: 841–852. ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Arnold H. D. and Espenschied L. 1923. “Transatlantic radio telephony”, Bell Labs Tech. J., 2(4): 116–144. CrossRefGoogle Scholar
  5. 5.
    Armstrong C. M. 2015. “The Quest for the Ultimate Vacuum Tube”, IEEE Spectrum, 52(12): 28–51. CrossRefGoogle Scholar
  6. 6.
    Atten M. 1996. Histoire, recherche télécommunications; Des recherches au CNET. 1940–1965 (Hors Série n°14, Réseaux, CNET). Google Scholar
  7. 7.
    Baldwin L. G. 1968. S-band power amplifier - Improvement program Final report (NASA-CR-101964) ntrs: 19690031483. Google Scholar
  8. 8.
    Barsotti T., Gastaud J., Pontic J. and Barentin M. 2018. “40W Q Wideband Space TWT”, accepted for the 19th IEEE International Vacuum Electronics Conference 2018 Monterey. Google Scholar
  9. 9.
    Barton M. A. 1946. “Traveling Wave Tubes”, Radio, 30(8): 11–13, 30–32. Google Scholar
  10. 10.
    Bénisti D. 2016. “Envelope equation for the linear and nonlinear propagation of an electron plasma wave, including the effects of Landau damping, trapping, plasma inhomogeneity, and the change in the state of wave”, Phys. Plasmas, 23(10): 102105. ADSCrossRefGoogle Scholar
  11. 11.
    Bernier J. 1947a. “Essai de théorie du tube électronique à propagation d’ondes”, Ann. Radioélec., 2(7): 87–101. Google Scholar
  12. 12.
    Bernier J. 1947b. “Essai de théorie du tube électronique à propagation d’ondes”, Onde Élec., 27(243): 231–243. Google Scholar
  13. 13.
    Blanc-Lapierre A. and Lapostolle P. 1946. “Contribution à l’étude des amplificateurs à ondes progressives”, Ann. Télécommun., 1(12): 283–302. Google Scholar
  14. 14.
    Blanc-Lapierre A., Lapostolle P., Voge J. P. and Wallanschek R. 1947. “Sur la théorie des amplificateurs à ondes progressives”, Onde Élec., 27(242): 194–202. Google Scholar
  15. 15.
    Blanchard J. 1938. “Hertz, the discoverer of electric waves” Proc. IRE, 26(5): 505–515. CrossRefGoogle Scholar
  16. 16.
    Bodmer M. G., Laico J. P., Olsen E. G. and Ross A. T. 1963. “The satellite traveling-wave tube”, Bell Labs Tech. J., 42(4): 1703–1748. CrossRefGoogle Scholar
  17. 17.
    Bonifacio R., Casagrande F. and Pellegrini C. 1987. “Hamiltonian model of a free electron laser”, Opt. Commun., 61(1): 55–60. ADSCrossRefGoogle Scholar
  18. 18.
    Bonifacio R., Casagrande F., Ferrario M., Pierini P. and Piovella N. 1988. “Hamiltonian model and scaling laws for free-electron-laser amplifiers with tapered wiggler”, Opt. Commun., 66(2-3): 133–139. ADSCrossRefGoogle Scholar
  19. 19.
    Bonifacio R., Casagrande F., Cerchioni G., De Salvo Souza L. and Pierini P. Piovella N. 1990. “Physics of the high-gain FEL and superradiance”, Riv. Nuovo Cim., 13(9): 1–69. ADSCrossRefGoogle Scholar
  20. 20.
    Booker H. G. and Gordon W. E. 1950. “A Theory of Radio Scattering in the Troposphere” Proc. IRE, 38(4): 401–412. CrossRefGoogle Scholar
  21. 21.
    Bray J. 1995. The Communications Miracle (Springer, New York). Google Scholar
  22. 22.
    Bretting J. and Klein W. 1969. “Traveling-wave tube for the communication satellite Symphonie”, J. Spacecr. Rockets, 6(3): 285–288. ADSCrossRefGoogle Scholar
  23. 23.
    Butrica A. J. (Editor) 1997. Beyond the Ionosphere: Fifty Years of Satellite Communication (The NASA History Series, SP-4217) ntrs: 19970026049. Google Scholar
  24. 24.
    Cabessa R. 1952. “L’apport des liaisons par faisceaux hertziens dans le domaine des télécommunications”, Onde Élec., 32(301-302): 131–151. Google Scholar
  25. 25.
    Chodorow M. and Wessel-Berg T. 1961 “A high-efficiency klystron with distributed interaction”, IRE Trans. Electron Devices, 8(1): 44–55. ADSCrossRefGoogle Scholar
  26. 26.
    CIA November 18, 1953. Soviet Research on Traveling Wave Tube (CIA report) foia: CIA-RDP80-00809A000700150068-9. Google Scholar
  27. 27.
    Clarke A. C. 1945a. “Peacetime uses for V2: V2 for Ionosphere Research?”, Wireless World, 51(2): 58. Google Scholar
  28. 28.
    Clarke A. C. 1945b. “The Space-Station: Its Radio Applications”, report to the members of the British Interplanetary Society. Google Scholar
  29. 29.
    Clarke A. C. 1945c. “Extra-Terrestrial Relays: Can Rocket Stations Give World-Wide Radio Coverage?”, Wireless World, 51(10): 305–308. Google Scholar
  30. 30.
    Clarke A. C. 1952. The Exploration of Space (Harper & Row, New York). Google Scholar
  31. 31.
    Clarke A. C. 1968. 2001: a Space Odyssey (Hutchinson, London). Google Scholar
  32. 32.
    Clarke A. C. 1973. Profiles of the Future (Harper & Row, New York) revised edition. Google Scholar
  33. 33.
    Clavier A. G. and Rostas E. 1941. Electron tube and circuits employing it, U.S. Patent 2, 232, 050, filed May 27, 1938, issued February 18, 1941. Google Scholar
  34. 34.
    Clavier A. G. and Rostas E. 1942. Electron tube and circuits employing it, U.S. Patent 2, 232, 756, filed June 09, 1939, issued July 14, 1942. Google Scholar
  35. 35.
    Clayton R. J., Espley D. C., Griffith G. W. S. and Pinkham J. M. C. 1951. “The London-Birmingham television radio-relay link”, J. Inst. Electr. Eng., 1951(7): 222–226. Google Scholar
  36. 36.
    Coaker B. and Challis T. 2008. “Travelling Wave Tubes: Modern Devices and Contemporary Applications”, Microwave J., 0(10): 32–46. Google Scholar
  37. 37.
    Coe D. 1961. Marconi; Pioneer of Radio (Julian Messner, Inc., New York). Google Scholar
  38. 38.
    Collier R. J., Helm G. D., Laico J. P. and Striny K. M. 1963. “The ground station high-power traveling-wave tube”, Bell Labs Tech. J., 42(4): 1829–1861. CrossRefGoogle Scholar
  39. 39.
    Copeland J. and Haeff A. A. 2015a. “Andrew V. Haeff: Enigma of the Tube Era and Forgotten Computing Pioneer”, IEEE Ann. Hist. Comput., 37: 67–74. CrossRefGoogle Scholar
  40. 40.
    Copeland J. and Haeff A. A. 2015b. “The True History of the Traveling Wave Tube”, IEEE Spectrum, 52(9): 38–43. CrossRefGoogle Scholar
  41. 41.
    Copeland J., Haeff A. A., Gough P. and Wright C. 2017. “Screen History: The Haeff Memory and Graphics Tube”, IEEE Ann. Hist. Comput., 39: 9–28. CrossRefGoogle Scholar
  42. 42.
    Corliss W. R. 1972. The interplanetary Pioneers. Volume 2: System design and development (NASA-SP-279-VOL-2) ntrs: 19730009155. Google Scholar
  43. 43.
    Crawford A. B., Cutler C. C., Kompfner R. and Tillotson T. C. 1963. “The research background of the Telstar experiment”, Bell Labs Tech. J., 42(4): 747–751. CrossRefGoogle Scholar
  44. 44.
    Crawley C. 1928. “Visible speech across the Atlantic”, Television, 1(3): 20–21. Google Scholar
  45. 45.
    Cuccia C. L. 1981. Television broadcast from space systems: Technology, costs (NASA-CR-169247), ntrs: 19820022555. Google Scholar
  46. 46.
    Cutler C. C. 1948. “Experimental Determination of Helical-Wave Properties”, Proc. IRE, 36: 230–233. CrossRefGoogle Scholar
  47. 47.
    Cutler C. C. 1956. “The Nature of Power Saturation in Traveling Wave Tubes”, Bell Labs Tech. J., 35(4): 841–876. CrossRefGoogle Scholar
  48. 48.
    Davies M. E. and Harris W. R. 1988. RAND’s Role in the Evolution of Balloon and Satellite Observation Systems and Related U.S. Space Technology (Defense Technical Information Center), dtic: ADA216963. Google Scholar
  49. 49.
    Dawson G., Hall L. L., Hodgson K. G., Meers R. A. and Merriman J. H. H. 1954. “The Manchester-Kirk o’Shotts television radio-relay system”, Proc. IEE - Part I: General, 101(169): 93–109. Google Scholar
  50. 50.
    U.S. Department of Defense. 1997. Industrial Assessment of the Microwave Power Tube Industry (Industrial Capabilities and Assessments, Pentagon, Washington, DC) dtic: ADA323772. Google Scholar
  51. 51.
    Dimonte G. 1977. Destruction of trapped particle oscillations, Ph.D. thesis (Univ. California at San Diego, La Jolla, California). Google Scholar
  52. 52.
    Dinsdale A. 1926a. “Television – An accomplished fact”, Radio News, 8(3): 206–207, 280–283. Google Scholar
  53. 53.
    Dinsdale A. 1926b. “And now, we see by radio!”, Radio Broadcast, 10(2): 139–143. Google Scholar
  54. 54.
    Doveil F., Escande D. F. and Macor A. 2005. “Experimental observation of nonlinear synchronization due to a single wave”, Phys. Rev. Lett., 94: 085003. ADSCrossRefGoogle Scholar
  55. 55.
    Doveil F., Macor A. and Aïssi A. 2007. “Observation of Hamiltonian chaos and its control in wave particle interaction”, Plasma Phys. Control. Fusion, 49: 125–135. ADSzbMATHCrossRefGoogle Scholar
  56. 56.
    Dunlap O. E., Jr. 1944. Radio’s 100 Men of Science (Harper & Brothers, New York). Google Scholar
  57. 57.
    Dürr W., Dürr C., Ehret P. and Bosch E. 2015. “Thales 150 W C-Band radiation cooled Travelling Wave Tube”, 15th IEEE International Vacuum Electronics Conference 2015 Beijing, https://doi.org/10.1109/IVEC.2015.7223814.
  58. 58.
    Durkee A. L. 1947. “A Microwave relay system between New York and Boston”, Bell Labs Record, 25(12): 207–210. Google Scholar
  59. 59.
    Eiffel G. 1900. Travaux scientifiques exécutés à la tour de 300 mètres: De 1889 à 1900 (L. Maretheux, Paris). Google Scholar
  60. 60.
    Elskens Y. and Escande D. F. 2003. Microscopic Dynamics of Plasmas and Chaos (IoP Publishing, Bristol). Google Scholar
  61. 61.
    Elskens Y., Escande D. F. and Doveil F. 2014. “Vlasov equation and N-body dynamics - How central is particle dynamics to our understanding of plasmas?”, Eur. Phys. J. D, 68: 218. ADSCrossRefGoogle Scholar
  62. 62.
  63. 63.
    Escande D. F. 2010. “Wave-particle interaction in plasmas : A qualitative approach”, in Dauxois T., Ruffo S. and Cugliandolo L. F. (Editors), Long-Range Interacting Systems (Oxford University Press, Oxford), pp. 469–506. Google Scholar
  64. 64.
    Escande D. F. 2018. “From thermonuclear fusion to Hamiltonian chaos”, Eur. Phys. J. H 43, 397–420. CrossRefGoogle Scholar
  65. 65.
    Faillon G., Kornfeld G., Bosch E. and Thumm M. K. 2008. “Microwave Tubes”, in Eichmeier J. A. and Thumm M. K. (Editors) Vacuum Electronics (Springer, Berlin), pp. 1–82. Google Scholar
  66. 66.
    Faulkner H. 1952. “Permanent point-to-point links for relaying television”, Proc. IEE - Part IIIA: Television, 99(18): 313–322. Google Scholar
  67. 67.
    Feldman N. E. 1965. “Communication Satellite Output Devices, Part 2”, Microwave J., 87–97. Google Scholar
  68. 68.
    Ferrié G. A. 1911. “Sur quelques nouvelles applications de la télégraphie sans fil”, J. Phys. Théor. Appl., 1: 178–189. CrossRefGoogle Scholar
  69. 69.
    Field L. M. 1951. High-frequency amplifying device , U.S. Patent 2, 575, 383, filed October 22, 1946, issued November 20, 1951. Google Scholar
  70. 70.
    Filep R. T., Schnapf A. and Fordyce S. W. 1983. Study to forecast and determine characteristics of world satellite communications market (NASA-CR-168270) ntrs: 19840008358. Google Scholar
  71. 71.
    Firpo M.-C., Doveil F., Elskens Y., Bertrand P., Poleni M. and Guyomarc’h D. 2001. “Long-time discrete particle effects versus kinetic theory in the self-consistent single-wave model”, Phys. Rev. E, 64: 026407. ADSCrossRefGoogle Scholar
  72. 72.
    Fleming J. A. 1905. Instrument for converting alternating electric currentsinto continuous currents, U.S. Patent 803, 684, filed April 19, 1905, issued November 7, 1905. Google Scholar
  73. 73.
    Flint P. B. 1977. “Dr. Rudolf Kompfner Dies at 68; Developer of UHF Amplification”, The New York Times. Google Scholar
  74. 74.
    de Forest L. 1908. Space telegraphy, U.S. Patent 879, 532, filed January 29, 1907, issued February 18, 1908. Google Scholar
  75. 75.
    Forestier P. 1951. “Le nouveau faisceau hertzien P.T.T. Paris-Lille, à ondes centimétriques” TSF pour tous, 276: 314–316. Google Scholar
  76. 76.
    Gastaud J., Gérard E., Laurent A. and Stalzer H. 2014. “170W Ka-Band space TWT”, 14th IEEE International Vacuum Electronics Conference 2014 Monterey,  https://doi.org/10.1109/IVEC.2014.6857480.
  77. 77.
    Gavaghan H. 1998. Something New Under the Sun Satellites and the Beginning of the Space Age (Springer, New York). Google Scholar
  78. 78.
    Gernsback H. 1927. “Can We Radio the Planets?”, Radio News, 8(8): 946–947, 1045. Google Scholar
  79. 79.
    Gernsback H. (Editor) 1936. “Giant television camera used at olympics”, Short Wave Craft, 392, 424. Google Scholar
  80. 80.
    Gertner J. 2012. The Idea Factory: Bell Labs and the Great Age of American Innovation (Penguin, London). Google Scholar
  81. 81.
    Gilmour A. S., Jr. 1994. Principles of Traveling Wave Tubes (Artech House Radar Library, Boston). Google Scholar
  82. 82.
    Gilmour A. S., Jr. 2011. Klystrons, Traveling Wave Tubes, Magnetrons, Cross-Field Amplifiers, and Gyrotrons (Artech House Radar Library, Boston). Google Scholar
  83. 83.
    Goldsmith A. N., Van Dyck A. F., Burnap R. S., Dickey E. T. and Baker G. M. K. (Editors) 1946. Television, Volume III 1938–1941 (RCA Laboratories Division, Princeton, New Jersey). Google Scholar
  84. 84.
    Gootée T. 1946. “Radar reaches the Moon”, Radio News, 35(4): 25–27. Google Scholar
  85. 85.
    Grant T. 1996. International Directory of Company Histories, Volume 15 (St. James Press, MI). Google Scholar
  86. 86.
    Grieg D. D., Metzger S. and Waer R. 1948. “Considerations of Moon-Relay Communication”, Proc. IRE, 36(5): 652–663. CrossRefGoogle Scholar
  87. 87.
    Guénard P., Doehler O., Epsztein B. and Warnecke R. 1952. “Nouveaux tubes oscillateurs à large bande d’accord”, Comptes Rendus Acad. Sci., 235: 236–238. Google Scholar
  88. 88.
    Gutton H., Fagot J. and Hugon J. 1952. “les équipements du faisceau hertzien Paris-Lille”, Onde Élec., 32(301-302): 174–180. Google Scholar
  89. 89.
    Guyomarc’h D. 1996. Un tube à onde progressive pour l’étude de la turbulence plasma, Thèse de Doctorat (Univ. Provence, Aix-Marseille I). Google Scholar
  90. 90.
    Haeff A. V. 1936. Device for and method of controlling high frequency currents, U.S. Patent 2, 064, 469, filed October 23, 1933, issued December 15, 1936. Google Scholar
  91. 91.
    Haeff A. V. 1939. “An Ultra-High-Frequency Power Amplifier of Novel Design”, Electronics, 12(2): 30–32. Google Scholar
  92. 92.
    Haeff A. V. 1941a. Device for and method of controlling high frequency currents, U.S. Patent 2, 233, 126, priority date October 23, 1933, filed May 14, 1936, issued February 25, 1941. Google Scholar
  93. 93.
    Haeff A. V. 1941b. Electron discharge device, U.S. Patent 2, 237, 878, filed February 2, 1939, issued April 8, 1941. Google Scholar
  94. 94.
    Halsey R. J. and Williams H. 1952. “The Birmingham-Manchester-Holme Moss television-cable system”, Proc. IEE - Part IIIA: Television, 99(18): 398–410. Google Scholar
  95. 95.
    Haynes F. H. 1929. “Television reception tests”, Wireless World, 225: 669–673. Google Scholar
  96. 96.
    Heaviside O. 1902. Encyclopedia Britannica, 10 th edition, Vol. 33, p. 215. Google Scholar
  97. 97.
    Hertz H. R. 1888. “Ueber die Ausbreitungsgeschwindigkeit der electrodynamischen Wirkungen”, Wied. Ann., 34: 551–569. zbMATHCrossRefGoogle Scholar
  98. 98.
    Hertz H. R. 1889. “Die Kräfte electrischer Schwingungen, behandelt nach derMaxwell’schen Theorie”, Wied. Ann., 36: 1–22. CrossRefGoogle Scholar
  99. 99.
    Hertz H. R., English translation by Jones D. E. 1893. Electrical Waves (Dover Publication Inc., New York). Google Scholar
  100. 100.
    Highstrete B. A. and Grabowski K. P. 1962. 1962 International Electron Devices Meeting,  https://doi.org/10.1109/IEDM.1962.187332.
  101. 101.
    Hulburt E. O. 1929. “Ionization in the Atmosphere of Mars”, Proc. IRE, 19(9): 1523–1527. CrossRefGoogle Scholar
  102. 102.
  103. 103.
    IEEE 2003. 521-2002 - IEEE Standard Letter Designations for Radar-Frequency Bands,  https://doi.org/10.1109/IEEESTD.2003.94224.
  104. 104.
    Jarrett J. H. 1964. “Traveling Wave Tubes”, Electronics World, 71(3): 25–28. Google Scholar
  105. 105.
    Jenkins C. F. 1925. Transmitting pictures by wireless, U.S. Patent 1, 544, 156, filed March 13, 1922, issued June 30, 1925. Google Scholar
  106. 106.
    Jonas G. 2008. “Arthur C. Clarke, Author Who Saw Science Fiction Become Real, Dies at 90”, The New York Times. Google Scholar
  107. 107.
    Josifovska S. (Editor) 2013. “Centenary Issue”, Electronics World, 119: 14–19. Google Scholar
  108. 108.
    Keith L. J. and Brogue A. (Editors) 1950. Father of Radio; the Autobiography of Lee de Forest (Wilcox & Follett Co., Chicago). Google Scholar
  109. 109.
    Kempkes M. A., Hawkey T. J., Gaudreau M. P. J. and Phillips R. A. 2006. “W-Band Transmitter Upgrade for the Haystack UltraWideband Satellite Imaging Radar (HUSIR)”, IEEE International Vacuum Electronics Conference 2006, Monterey,  https://doi.org/10.1109/IVELEC.2006.1666427.
  110. 110.
    Kennedy T. R., Jr. 1946. “New tube expands radio possibilities”, The New York Times. Google Scholar
  111. 111.
    Kennelly A. E. 1902. “On the elevation of the Electrically-Conducting Strata of the Earth’s Atmosphere”, Electrical World Engineer, 39(11): 473. Google Scholar
  112. 112.
    Kinzer J. P. and Laidig J. F. 1956. “Engineering aspects of the TH microwave radio relay system”, Bell Labs Tech. J., 40(6): 1459–1494. Google Scholar
  113. 113.
    Kohlhaas H. T. 1931. “7 Inch Waves Span 21 Miles”, Short Wave Craft, 2(1): 10–11, 65–66. Google Scholar
  114. 114.
    Kompfner R. 1946. “The Traveling Wave Valve”, Wireless World, 52(11): 369–372. Google Scholar
  115. 115.
    Kompfner R. 1947a. “The traveling wave tube as an amplifier at microwaves”, Proc. IRE, 35(2): 124–127. CrossRefGoogle Scholar
  116. 116.
    Kompfner R. 1947b. “The Travelling-Wave Tube, Centimetre-Wave Amplifier”, Wireless Engineer, 53(9): 255–266. Google Scholar
  117. 117.
    Kompfner R. 1952. “Travelling-wave tubes”, Rep. Prog. Phys., 15: 275–327. ADSzbMATHCrossRefGoogle Scholar
  118. 118.
    Kompfner R. 1964. The Invention of Traveling Wave Tubes (San Francisco Press, San Francisco). Google Scholar
  119. 119.
    Kompfner R. 1976. “The invention of traveling wave tubes”, IEEE Trans. Elec. Devices, 23: 730–738. ADSCrossRefGoogle Scholar
  120. 120.
    Kornfeld G. and Bosch E. 2001. “From History to Future of Satellite TWT Amplifiers”, Frequenz, 55: 258–262. ADSCrossRefGoogle Scholar
  121. 121.
    Kosmahl H. 1982. Space tubes: A major challenge (1982 International Electron Devices Meeting IEEE) ntrs: 19830003177. Google Scholar
  122. 122.
    Kosmahl H. 1983. “Space power tubes – very much alive” (Cleveland Electronic Conference (CECON ’83) IEEE) ntrs: 19830020024. Google Scholar
  123. 123.
    Lindenblad N. E. 1939. “Television transmitting antenna for Empire State Building”. RCA Rev., 111(4): 387–408. Google Scholar
  124. 124.
    Lindenblad N. E. 1942. Electron discharge device system, U.S. Patent 2, 300, 052, filed May 4, 1940, issued October 27, 1942. Google Scholar
  125. 125.
    Lindenblad N. E. 1951. High-frequency electron discharge device of the traveling wave type, U.S. Patent 2, 578, 434, filed June 25, 1947, issued December 11, 1951. Google Scholar
  126. 126.
    Lindenblad N. E. 1954. High-frequency electron discharge device, U.S. Patent 2, 679, 019, filed December 2, 1947, issued May 18, 1954. Google Scholar
  127. 127.
    Llewellyn F. B. 1937. Space discharge apparatus, U.S. Patent 2, 096, 460, filed January 23, 1936, issued October 19, 1937. Google Scholar
  128. 128.
    Llewellyn F. B. 1945. Electron discharge device, U.S. Patent 2, 367, 295, filed May 17, 1940, issued January 16, 1945. Google Scholar
  129. 129.
    Logsdon J. M. (Editor) 1995 to 2008. Exploring the Unknown, VolumesI to VII (The NASA History Series). Google Scholar
  130. 130.
    Loshakov L. N. 1949. “On the propagation of waves along a coaxial spiral line in the presence of an electron beam”, Zh. Tech. Fiz., 19: 578–595. MathSciNetGoogle Scholar
  131. 131.
    Lowell P. 1896. Mars (Houghton, Mifflin and Co, Boston). Google Scholar
  132. 132.
    Lowell P. 1906. Mars and Its Canals (The Macmillan Company, New York). Google Scholar
  133. 133.
    MacDonald M. E., Anderson J. P., Lee R. K., Gordon D. A. and McGrew G. N. 2014. “The HUSIR W-Band Transmitter”, Lincoln Laboratory J., 21(1): 106–114. Google Scholar
  134. 134.
    Martin A. V. J. 1952. “International TV is here”, Radio News, 48(6): 31–33, 118–119. Google Scholar
  135. 135.
    Marzin P. 1951. “Les câbles hertziens”, Ann. Télécommun., 6(12): 363–380. Google Scholar
  136. 136.
    Maxwell J. C. 1865. “A Dynamical Theory of the Electromagnetic Field”, Philos. Trans. Royal Soc., 155: 459–512. ADSCrossRefGoogle Scholar
  137. 137.
    McDowell H. L. 1960. “The Traveling-Wave Tube Goes to Work”, Bell Labs Record, 38(6): 207–210. Google Scholar
  138. 138.
    McKenzie A. A. (Editor) 1946. “New Products: Traveling Wave Tube”, Electronics, 29: 206. Google Scholar
  139. 139.
    Mehrholz D., Leushacke L., Flury W., Jehn R., Klinkrad H. and Landgraf M. 2002. “Detecting, Tracking and Imaging Space Debris”, ESA Bull., 109: 128–134. ADSGoogle Scholar
  140. 140.
    Mendel J. T. 1973. “Helix and coupled-cavity traveling-wave tubes”, Proc. IEEE, 61(3): 280–298. CrossRefGoogle Scholar
  141. 141.
    Minenna D. F. G. 2016. Description hamiltonienne de l’interaction ondes-électrons dans un guide d’onde périodique, M. Sc. thesis (Aix-Marseille Univ., Marseille). Google Scholar
  142. 142.
    Minenna D. F. G., Elskens Y. and André F. 2017. “Electron-wave momentum exchange and time domain simulations applied to travelingwave tubes”, 18 th IEEE International Vacuum Electronics Conference 2017 London, https://doi.org/10.1109/IVEC.2017.8289689.
  143. 143.
    Minenna D. F. G., Elskens Y., André F. and Doveil F. 2018. “Electromagnetic power and momentum in N-body Hamiltonian approach to wave-particle dynamics in a periodic structure”, Europhys. Lett., 122: 44002. ADSCrossRefGoogle Scholar
  144. 144.
    Miquel P. 1973. Histoire de la radio et de la télévision (Édition Richelieu, Paris). Google Scholar
  145. 145.
    Mofenson J. 1946. “Radar echoes from the Moon”, Electronics, 19(4): 92–98. Google Scholar
  146. 146.
    Morton J. A. 1949. “A microwave triode for radio relay”, Bell Labs Record, 27(5): 166–170. Google Scholar
  147. 147.
    NASA 1963a. Telstar I, Volume 3 (NASA Technical Report SP-32), ntrs: 19640001170. Google Scholar
  148. 148.
    NASA 1963b. Advanced Syncom, Volume 1 (NASA-CR-74485), ntrs: 19660014301. Google Scholar
  149. 149.
    NASA 1963c. Advanced Syncom, Volume 4 (NASA-CR-74580), ntrs: 19660015211. Google Scholar
  150. 150.
    NASA 1965. Relay I Program, Final Report (NASA-SP-76), ntrs: 19660000937. Google Scholar
  151. 151.
    NASA 1977. Two Voyagers Set for Launch (NASA-NEWS-RELEASE-77-136, P77-10165), ntrs: 19770079866. Google Scholar
  152. 152.
  153. 153.
    Nomura T., Suzuki N., Mita S. and Sawazaki N. 1954. “Microwave Relay for Japanese Television”, Electronics, 27(6): 152–156. Google Scholar
  154. 154.
    Nyman A. 1931. “Europe rise to television; Zeiss is a hit”, Radio World, 20(12): 21. Google Scholar
  155. 155.
    Obituary. February 20, 1978. “Nils E. Lindenblad, at 82, a pioneer in radio and TV”, The New York Times. Google Scholar
  156. 156.
    Obituary. July 25, 1990. “Kenjiro Takayanagi, Electrical Engineer, 91”, TheNew York Times. Google Scholar
  157. 157.
    Obituary. February 14, 2014. “John Thomas Mendel”, Los Angeles Times. Google Scholar
  158. 158.
    Ogata M., Mizusawa H. and Irie K. 1985. Discussion on the progress and future of satellite communication (Japan) (NASA-TM-77672), ntrs: 19860000911. Google Scholar
  159. 159.
    Pchelnikov Y. N. 2003. “Old Know-How in Helix TWT Development in the USSR”, High Energy Density and High Power RF: 6th Workshop (American Institute of Physics). Google Scholar
  160. 160.
    Pellegrini C. 2012. “The history of X-ray free-electron lasers”, Eur. Phys. J. H 37: 659–708. CrossRefGoogle Scholar
  161. 161.
    Percival W. S. 1937. Improvements in and relating to thermionic valve circuits, British Patent Specification No. 460 562, filed July 24, 1935, accepted January 25, 1937. Google Scholar
  162. 162.
    Philips Natuurkundig Laboratorium history website, https://doi.org/extra.research.philips.com.
  163. 163.
    Pierce J. R. 1946. “The beam traveling-wave tube”, Bell Labs Record, 24(12): 439–442. Google Scholar
  164. 164.
    Pierce J. R. and Field L. M. 1947. “Traveling-wave tubes”, Proc. IRE, 35(2): 108–111. CrossRefGoogle Scholar
  165. 165.
    Pierce J. R. 1947. “Theory of the beam-type as amplifier at microwaves”, Proc. IRE, 35(2): 111–124. CrossRefGoogle Scholar
  166. 166.
    Pierce J. R. 1950. Traveling Wave Tubes (Van Nostrand, New York). Google Scholar
  167. 167.
    Pierce J. R. 1952. Traveling Wave Tube, U.S. Patent 2, 602, 148, filed October 22, 1946, issued July 1, 1952. Google Scholar
  168. 168.
    Pierce J. R., under the pseudonym J. J. Coupling. 1952. “Don’t Write: Telegraph!”, Astounding Sci. Fiction, 49: 82–96. Google Scholar
  169. 169.
    Pierce J. R. 1955. “Orbital Radio Relays”, Jet Propulsion, 25(4): 153–157. CrossRefGoogle Scholar
  170. 170.
    Pierce J. R. 1959. “Exotic Radio Communications”, Bell Labs Records, 37(9): 323–329. Google Scholar
  171. 171.
    Pierce J. R. and Kompfner R. 1959. “Transoceanic Communication by Means of Satellites”, Proc. IRE, 47(3): 372–380. CrossRefGoogle Scholar
  172. 172.
    Pierce J. R. 1962. “History of the Microwave-Tube Art”, Proc. IRE, 50(5): 978–984. CrossRefGoogle Scholar
  173. 173.
    Pierce J. R. 1968. The Beginnings of Satellite Communications (San Francisco Press, San Francisco). Google Scholar
  174. 174.
    Pocklington H. C. 1897. “Electrical oscillations in wires”, Proc. Camb. Philos. Soc., 9: 324. zbMATHGoogle Scholar
  175. 175.
    Pocock H. S. (Editor) 1933. “The Iconoscope – America’s Latest Television Favourite”, Wireless World, 33(9): 197. Google Scholar
  176. 176.
    Posthumus K. 1935. “Oscillations in split anode magnetron”, Wireless Engineer, 12(138): 126–132. Google Scholar
  177. 177.
    Potter R. K. 1938. Wave amplifier, U.S. Patent 2, 122, 538, filed January 22, 1935, issued July 5, 1938. Google Scholar
  178. 178.
    Project RAND. May 1946. Preliminary Design of an Experimental World-Circling Spaceship (Report No. SM-11827, Douglas Aircraft Company Inc., Santa Monica, CA). Google Scholar
  179. 179.
    Rayleigh (Lord) 1897. “On the passage of electric waves through tubes, or the vibrations of dielectric cylinders”, Philos. Mag., 43(261): 125–132. zbMATHCrossRefGoogle Scholar
  180. 180.
    Roberts L. A. 1967. The efficiency improvement program for the WJ-274 traveling wave tube (NASA-CR-66522), ntrs: 19680004733. Google Scholar
  181. 181.
    Roberts W. V. B. 1939. Electron discharge device circuit, U.S. Patent 2, 168, 782, filed October 7, 1935, issued August 8, 1939. Google Scholar
  182. 182.
    Rockett F. (Editor) 1946. “Wideband Microwave Amplifier Tube”, Electronics, 29: 90–92. Google Scholar
  183. 183.
    Roetken A. A., Smith K. D. and Friis R. W. 1951. “The TD-2 microwave radio relay system” Bell Labs Tech. J., 30(4): 1041–1077. CrossRefGoogle Scholar
  184. 184.
    Rogers D. C. 1949. “Travelling-Wave Amplifier for 6 to 8 Centimetres”, Electrical Commun., 26(2): 144–152. Google Scholar
  185. 185.
    Rogers D. C. 1953. “The Travelling-Wave Tube as Output Amplifier in Centimetre-Wave Radio Links”, Proc. IEE-Part III: Radio Commun. Eng., 100(65): 151–156. Google Scholar
  186. 186.
    Rosenberg H. R. (Editor) 1972. Apollo experience report: S-band system signal design and analysis (NASA-TN-D-6723), ntrs: 19720012253. Google Scholar
  187. 187.
    Roubine E. 1947 “Sur le circuit à hélice utilisé dans le tube à ondes progressives”, Onde Élec., 27(242): 203–205. Google Scholar
  188. 188.
    Rowe J. E. 1965. Nonlinear Electron-Wave Interaction Phenomena (Academic Press Inc., New York). Google Scholar
  189. 189.
    Sauseng O. G., Basiulis A. and Tammaru I. 1968. Analytical study program to develop the theoretical design of traveling-wave tubes Final report (NASA-CR-72450), ntrs: 19690009543. Google Scholar
  190. 190.
    Sawazaki N. and Honma T. 1956. “New Microwave Repeater System Using Traveling-Wave Tubes”, Proc. IRE, 44(1): 19–24. CrossRefGoogle Scholar
  191. 191.
    Saxon W. 2002. “John Robinson Pierce, 92, A Father of the Transistor”, The New York Times. Google Scholar
  192. 192.
    Schafer J. P. and Brandt R. H. 1961. Project Echo - 960-megacycle, 10-kilowatt transmitter (NASA-TN-D-1129), ntrs: 19980227850. Google Scholar
  193. 193.
    Schmid P. E. 1967. The feasibility of a direct relay of Apollo spacecraft data via a communication satellite (NASA-TN-D-4048), ntrs: 19670025652. Google Scholar
  194. 194.
    Schwartz M. and Hayes J. 2008. “A history of transatlantic cables”, IEEE Commun. Mag., 49(9): 42–48. CrossRefGoogle Scholar
  195. 195.
    Sengupta D. L. and Sarkar T. K. 2003. “Maxwell, Hertz, the Maxwellians, and the early history of electromagnetic waves”, IEEE Antennas Propag. Mag., 45(2): 13–19. ADSCrossRefGoogle Scholar
  196. 196.
    Shulman C. and Heagy M. S. 1947. “Small-signal analysis of traveling-wave tube”, R.C.A. Rev., 8(4): 585–611. Google Scholar
  197. 197.
    Siddiqi A. A. 2002. Deep Space Chronicle: A Chronology of Deep Space and Planetary Probes 1958-2000 (NASA/SP-2002-4524) ntrs: 20020052429. Google Scholar
  198. 198.
    Siegmeth A. J., Purdue R. E. and Ryan R. E. 1973. Tracking and datasystem support for the Pioneer project. Volume 1: Pioneer 10-prelaunch planning through second trajectory correction, 4 December 1969 - 1 April 1972 (NASA-CR-131373) ntrs: 19730011461. Google Scholar
  199. 199.
    Smith H. F. (Editor) 1953. “International Televition: Radio and Cable 2, 000-mile Network for the Coronation Transmissions”, Wireless World, 59(6): 274–275. Google Scholar
  200. 200.
    Standard Telephones and Cables. 1939. Ultra-high Frequency Electron Discharge Systems for Dielectric Guide Transmission Systems , British Patents 508, 354, filed November 4, 1938, issued June 29, 1939. Google Scholar
  201. 201.
    Standard Telephones and Cables. 1941. Circuit Employing Discharge Valves, British Patents 533, 613, filed October 27, 1939, issued February 17, 1941. Google Scholar
  202. 202.
    Thales internal references, private communication. Google Scholar
  203. 203.
    Thayer G. N., Roetken A. A., Friis R. W. and Durkee A. L. 1947. “A Broad-Band Microwave Relay System between New York and Boston”, Proc. IRE, 37(2): 183–188. Google Scholar
  204. 204.
    Thomson J. J. 1893. Recent Researches in Electricity and Magnetism (Clarendon Press, Oxford). Google Scholar
  205. 205.
    Titchmarsh A. 2013. Elizabeth: Her Life, Our Times (Ebury Publishing, London). Google Scholar
  206. 206.
    Tolstoy A., English translation by Fetzer L. 1985. Aelita, or, the Decline of Mars (Ardis, New York). Google Scholar
  207. 207.
    Tsunoda S. I. and Malmberg J. H. 1982. “Effect of a Static Electric Field on the Trapping of Beam Electrons in a Slow Wave Structure”, Phys. Rev. Lett., 49: 546–549. ADSCrossRefGoogle Scholar
  208. 208.
    Tsunoda S. I. 1982. Wave enhancement due to a static electric field, Ph.D. thesis (Univ. California at San Diego, La Jolla, California). Google Scholar
  209. 209.
    Tsunoda S. I., Doveil F. and Malmberg J. H. 1987. “Experimental test of the quasilinear theory of the interaction between a weak warm electron beam and a spectrum of waves”, Phys. Rev. Lett., 58: 1112–1115. ADSCrossRefGoogle Scholar
  210. 210.
    Tucek J. C., Basten M. A., Gallagher D. A. and Kreischer K. E. 2016. “Operation of a compact 1.03 THz power amplifier”, 17th IEEE International Vacuum Electronics Conference 2016 Monterey,  https://doi.org/10.1109/IVEC.2016.7561772.
  211. 211.
    Tweether website, https://doi.org/tweether.eu/.
  212. 212.
    Unknown. 1920a. “The Eiffel Tower Radio Station”, Radio News, 2(6): 350–352, 417. Google Scholar
  213. 213.
    Unknown. 1920b. “Current Topics and Events”, Nature, 115 505–506, §7. Google Scholar
  214. 214.
    Unknown. 1927. “Radio board tests television process; Finds demonstration satisfactory and will keep top air band for it”, The New York Times, p. 17. Google Scholar
  215. 215.
    Unknown. 1951. “Manchester-Edinburgh Television Radio Relay System” Post Office Electrical Engineers’ J., 44: 33–34. Google Scholar
  216. 216.
    Unknown. 2017. “Le satellite Telkom 1 ne répond plus, le système bancaire touché”, le Courrier International. Google Scholar
  217. 217.
    Verne J. 1865. De la Terre à la Lune, trajet direct en 97 heures 20 minutes. Google Scholar
  218. 218.
    Voge J. 1946. “Sur deux schémas d’amplificateurs électroniques pour très hautes fréquences à onde progressive”, Comptes Rendus Acad. Sci., 223: 1117–1119. Google Scholar
  219. 219.
    Voge J. 1957a. “Tubes à onde progressive”, Ann. Télécommun., 12(3): 92–104. Google Scholar
  220. 220.
    Voge J. 1957b. “Tubes à onde progressive”, Ann. Télécommun., 12(4): 105–119. Google Scholar
  221. 221.
    Voge J. 1973. Les Tubes aux Hyperfréquences (Collection Technique et Scientifique du CNET, Éditions Eyrolles, Paris), 4e édition. Google Scholar
  222. 222.
    Warnecke R. R. 1956. “Principaux résultats acquis dans le domaine des tubes électroniques pour hyperfréquences”, Congrès International Tubes Hyperfréquences, 1956, Paris, printed in Onde Élec., 36(356): 875–887. Google Scholar
  223. 223.
    Wathen R. L. 1954. “The traveling wave tube–A record of its early history”, J. Franklin Inst., 258(6): 429–442. CrossRefGoogle Scholar
  224. 224.
    Wessel-Berg T. 1957. “A General Theory of Klystrons with Arbitrary, Extended Interaction Fields”, Report No. 376 (Microwave Lab., StanfordUniv., Stanford). Google Scholar
  225. 225.
    White L. 1952. Final Report, Project Hermes V-2 Missile Program (Report No. R52A0510, General Electric Company, Schenectady, NY). Google Scholar
  226. 226.
    Whitmore W. (Editor) 1946. “New Traveling Wave Tube”, Western Electric Oscillator, 5: 35. Google Scholar
  227. 227.
    Wichter Z. 2017. “Harold Rosen, Who Ushered in the Era of Communication Satellites, Dies at 90”, The New York Times. Google Scholar
  228. 228.
    Wildhack W. A. (Editor) 1946. “New Instruments: Beam Traveling-Wave Amplifier Tube”, Rev. Sci. Instrum., 17(12): 559–560. ADSGoogle Scholar
  229. 229.
    Young L. H. (Editor) 1965. “Special Report : Japanese technology”, Electronics, 38(25): 77–112. Google Scholar
  230. 230.
    Zaleski R., Mirczak W., Staich S., Caverly R., Smith E., Teti N., Vaught W. L. and Olney D. 2011. “Innovative Approach Enabled the Retirement of TDRS-1 Compliant with NASA Orbital Debris Requirements”, 2011 IEEE Aerospace Conference. Google Scholar
  231. 231.
    Zhang X., Feng J., Cai J., Wu X., Du Y., Chen J., Li S. and Meng W. 2017. “Design and Experimental Study of 250-W W-band Pulsed TWT With 8-GHz Bandwidth”, IEEE Trans. Electron Devices, 64(12): 5151–5156. ADSCrossRefGoogle Scholar
  232. 232.
    Zworykin V. K. 1933. “Television with cathode-ray tubes”, J. Inst. Electr. Eng., 73(442): 437–451. Google Scholar
  233. 233.
    Zworykin V. K. 1937. Direction indicator, U.S. Patent 2, 103, 507, filed March 31, 1936, issued December 28, 1937 Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre National d’Études SpatialesToulouse Cedex 9France
  2. 2.Aix-Marseille Université, CNRS, PIIM, UMR 7345Marseille Cedex 20France
  3. 3.Thales Electron DevicesVélizyFrance
  4. 4.Montpellier University, Place Eugène BataillonMontpellierFrance

Personalised recommendations