Skip to main content
Log in

Direct observations of galactic cosmic rays

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

The mysterious “radiation ... entering our atmosphere from above” discovered by Hess in 1912 is now known to be dominated by relativistic charged particles, mostly with energies in the GeV-range, but extending to energies higher by many orders of magnitude. As none of these particles can penetrate the earth’s atmosphere without interaction, detailed studies of their composition and energy spectra require observations with high-altitude balloons or spacecraft. This became possible only towards the middle of the 20th century. The direct measurements have now revealed much detail about the Galactic cosmic rays below 1015eV, but do not yet provide much overlap with the air-shower region of energies. A historic overview of the measurements is given, beginning with the realization that the majority of the cosmic rays are protons. The discovery and astrophysical significance of the heavier nuclei, and of the ultra-heavy nuclei beyond iron and up to the actinides, are then described, and measurements of the isotopic composition are discussed. Observations of the individual energy spectra are reviewed, and finally, the detection of electrons, positrons, and anti-protons in the cosmic rays, and the searches for exotic or unusual phenomena are summarized. Emphasis is given to the fact that all of these discoveries have become possible through the evolution of increasingly sophisticated detection techniques, a process that is continuing through the present time. The precise knowledge of the abundance distributions of the elements in the cosmic rays and of their isotopic composition permits a comparison with the “universal abundance scale” and provides strong constraints on the origin of the cosmic-ray material in the interstellar medium. “Clock-isotopes” reveal the time history of the particles. The shapes of the energy spectra of the individual cosmic-ray components are related to evolving ideas about particle acceleration and propagation in the Galaxy. In conclusion, prospects for future work are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, K. et al. 2011. Measurement of the cosmic-ray antiproton spectrum at solar minimum with a long-duration balloon flight over Antarctica. arXiv:1107.6000

  • Abe, K. et al. 2012. Search for Antihelium with the BESS-Polar Spectrometer. arXiv:1201.2967v1

  • Ackermann, M. et al. 2010. Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV. Phys. Rev. D 82 : 092004

    Article  ADS  Google Scholar 

  • Ackermann, M. et al. 2012. Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Phys. Rev. Lett. 108 : 011103

    Article  ADS  Google Scholar 

  • Adams, F.C. et al. 1997. Constraints on the intergalactic transport of cosmic rays. Astrophys. J. 491 : 6–12

    Article  ADS  Google Scholar 

  • Adriani, O. et al. 2009a. The PAMELA space mission. Nucl. Phys. B (Proc. Suppl.) 188 : 296–298

    Article  Google Scholar 

  • Adriani, O. et al. 2009b. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458 : 607–609

    Article  ADS  Google Scholar 

  • Adriani, O. et al. 2011a. The Cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV. Phys. Rev. Lett. 106 : 201101

    Article  ADS  Google Scholar 

  • Adriani, O. et al. 2011b. PAMELA measurements of cosmic-ray proton and helium spectra. Science 332 : 69–72

    Article  ADS  Google Scholar 

  • Aguilar, M. et al. 2002. The alpha magnetic spectrometer (AMS) on the international space station : Part I results from the test flight on the space shuttle. Phys. Rep. 366 : 331–405

    Article  ADS  Google Scholar 

  • Aguilar, M. et al. 2007. Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01. Phys. Lett. B 646 : 145–154

    Article  ADS  Google Scholar 

  • Aharonian, I. et al. 2008. Energy spectrum of cosmic-ray electrons at TeV energies. Phys. Rev. Lett. 101 : 261104

    Article  ADS  Google Scholar 

  • Ahlen, S.P. et al. 2000. Measurement of the isotopic composition of cosmic-ray helium, lithium, beryllium, and boron up to 1700 MeV per atomic mass unit. Astrophys. J. 534 : 757–769

    Article  ADS  Google Scholar 

  • Ahn, H.S. et al. 2007. The cosmic ray energetics and mass (CREAM) instrument. Nucl. Instrum. Methods Phys. Res. A 579 : 1034–1053

    Article  ADS  Google Scholar 

  • Ahn, H.S. et al. 2008. Measurements of cosmic ray secondary nuclei at high energy by the first flight of the CREAM balloon-borne experiment. Astropart. Phys. 30 : 133–141

    Article  ADS  Google Scholar 

  • Ahn, H. S. et al. 2010. Discrepant hardening observed in cosmic-ray elemental spectra. Astrophys. J. 714 : L89–L93

    Article  ADS  Google Scholar 

  • Alcaraz, J. et al. 1999. Search for antihelium in cosmic rays. Phys. Lett. B 461 : 387–396

    Article  ADS  Google Scholar 

  • Alcaraz, J. et al. 2000. Leptons in near earth orbit. Phys. Lett. B 484 : 10–22

    Article  ADS  Google Scholar 

  • Alfven, H. 1950. On the solar origin of cosmic radiation. Phys. Rev. 77 : 375–379

    Article  ADS  Google Scholar 

  • Alvarez, L. and A.H. Compton. 1933. A positively charged component of cosmic rays. Phys. Rev. 43 : 835–836

    Article  ADS  Google Scholar 

  • Amsler, C. et al. 2008. Review of particle physics. Phys. Lett. B 667 : 1

    Article  ADS  Google Scholar 

  • Anand, K.C. and R.R. Daniel. S.A. Stephens. 1975. Energy-spectrum of cosmic-ray electrons between 10 and 1000 GeV. Astrophys. Space Sci. 36 : 169–175

    Article  ADS  Google Scholar 

  • Anders, E. and M. Ebihara. 1982. Solar-system abundances of the elements. Geochim. Cosmochim. Acta 46 : 2363–2380

    Article  ADS  Google Scholar 

  • Apanasenko, A.V. et al. 2001. Composition and energy spectra of cosmic-ray primaries in the energy range 1013–1015 eV/particle observed by Japanese-Russian joint balloon experiment. Astropart. Phys. 16 : 13–46

    Article  ADS  Google Scholar 

  • Asakimori, K. et al. 1998. Cosmic-ray proton and helium spectra : Results from the JACEE experiment. Astrophys. J. 502 : 278–283

    Article  ADS  Google Scholar 

  • Ave, M. et al. 2008. Composition of primary cosmic-ray nuclei at high energies. Astrophys. J. 678 : 262–273

    Article  ADS  Google Scholar 

  • Ave, M. et al. 2009. Propagation and source energy spectra of cosmic ray nuclei at high energies. Astrophys. J. 697 : 106–114

    Article  ADS  Google Scholar 

  • Ave, M. et al. 2011. The TRACER instrument : A balloon-borne cosmic-ray detector. Nucl. Instrum. Methods Phys. Res. A 654 : 140–156

    Article  ADS  Google Scholar 

  • Axford, W.I., E. Leer and G. Skadron. 1977. Proc. 15th Int. Cosm. Ray Conf., Plovdiv, Vol. 11, p. 132

  • Baade, W. and F. Zwicky. 1934a. Supernovae and cosmic rays. Phys. Rev. 45 : 138

    Google Scholar 

  • Baade, W. and F. Zwicky. 1934b. Remarks on super-novae and cosmic rays. Phys. Rev. 46 : 76–77

    Article  ADS  Google Scholar 

  • Barwick, S.W. et al. 1997a. Measurements of the cosmic-ray positron fraction from 1 to 50 GeV. Astrophys. J. 482 : L191–L194

    Article  ADS  Google Scholar 

  • Barwick, S.W. et al. 1997b. The high-energy antimatter telescope (HEAT) : an instrument for the study of cosmic-ray positrons. Nucl. Instrum. Methods Phys. Res. A 400 : 34–52

    Article  ADS  Google Scholar 

  • Beach, A.S. et al. 2001. Measurement of the cosmic-ray antiproton-to-proton abundance ratio between 4 and 50 GeV. Phys. Rev. Lett. 87 : 271101

    Article  ADS  Google Scholar 

  • Beatty, J.J. et al. 2004. New measurement of the cosmic-ray positron fraction from 5 to 15 GeV. Phys. Rev. Lett. 93 : 241102

    Article  ADS  Google Scholar 

  • Bell, A.R. 1978. Acceleration of cosmic-rays in shock fronts. MNRAS 182 : 147–156

    ADS  Google Scholar 

  • Binns, W.R. et al. 1981a. Cosmic-ray abundances of elements with atomic-number 26 ≤ Z ≤ 40 measured on HEAO-3. Astrophys. J. 247 : 115–118

    Article  ADS  Google Scholar 

  • Binns, W.R. et al. 1981b. The UH-nuclei cosmic-ray detector on the 3rd high-energy-astronomy-observatory. Nucl. Instrum. Methods 185 : 415–426

    Article  ADS  Google Scholar 

  • Binns, W.R. et al. 1989. AIP Conf. Proc. 183 : 147

    Article  ADS  Google Scholar 

  • Blandford, R.D. and J.P. Ostriker. 1978. Particle acceleration by astrophysical shocks. Astrophys. J. 221 : L29–L32

    Article  ADS  Google Scholar 

  • Boezio, M. et al. 1997. The cosmic-ray antiproton flux between 0.62 and 3.19 GeV measured near solar minimum activity. Astrophys. J. 487 : 415–423

    Article  ADS  Google Scholar 

  • Boezio, M. et al. 2000. The cosmic-ray electron and positron spectra measured at 1 AU during solar minimum activity. Astrophys. J. 532 : 653–669

    Article  ADS  Google Scholar 

  • Bogomolov, E.A. et al. 1979. Proc. 16th Int. Cosm. Ray Conf., Kyoto, Vol. 1, p. 330

  • Bouffard, M. et al. 1982. The HEAO-3 cosmic-ray isotope spectrometer. Astrophys. Space Sci. 84 : 3–33

    Article  ADS  Google Scholar 

  • Bourquin, M. et al. 2005. The AMS tracking detector for cosmic-ray physics in space. Nucl. Instrum. Methods Phys. Res. A 541 : 110–116

    Article  Google Scholar 

  • Bradt, H.L. and B. Peters. 1948. Investigation of the primary cosmic radiation with nuclear photographic emulsions. Phys. Rev. 74 : 1828–1837

    Article  ADS  Google Scholar 

  • Buckley, J. et al. 1994. A new measurement of the flux of the light cosmic-ray nuclei at high energies. Astrophys. J. 429 : 736–747

    Article  ADS  Google Scholar 

  • Buffington, A., S.M. Schindler and C.R. Pennypacker. 1981. A measurement of the cosmic-ray antiproton flux and a search for anti-helium. Astrophys. J. 248 : 1179–1193

    Article  ADS  Google Scholar 

  • Burnett, T.H. et al. 1986. JACEE emulsion chambers for studying the energy-spectra of high-energy cosmic-ray protons and helium. Nucl. Instrum. Methods Phys. Res. A 251 : 583–595

    Article  ADS  Google Scholar 

  • Chang, J. et al. 2008. An excess of cosmic ray electrons at energies of 300–800 GeV. Nature 456 : 362–365

    Article  ADS  Google Scholar 

  • Clay, J. and H.P. Berlage. 1932. Variation der Ultrastrahlung mit der geographischen Breite und dem Erdmagnetismus. Naturwiss. 20 : 687

    Article  ADS  Google Scholar 

  • Cohen, A.G., A. de Rujula and S.L. Glashow. 1998. A matter-antimatter universe? Astrophys. J. 495 : 539–549

    Article  ADS  Google Scholar 

  • Compton, A.H. 1932. Variations of cosmic rays with latitude. Phys. Rev. 41 : 111–113

    Article  ADS  Google Scholar 

  • Compton, A.H. 1933. A geographic study of cosmic rays. Phys. Rev. 43 : 387–403

    Article  ADS  Google Scholar 

  • Coutu, S. et al. 2011. Searching for TeV cosmic electrons with the CREST experiment. Nucl. Phys. B (Proc. Suppl.) 215 : 250–254

    Article  ADS  Google Scholar 

  • Cox, D.P. 2005. The three-phase interstellar medium revisited. Ann. Rev. Astron. Astrophys. 43 : 337–385

    Article  ADS  Google Scholar 

  • De Shong, J.A.,R.H. Hildebrand and P. Meyer. 1964. Ratio of electrons to positrons in primary cosmic radiation. Phys. Rev. Lett. 12 : 3–6

    Article  ADS  Google Scholar 

  • Diehl, E. et al. 2003. The energy spectrum of cosmic-ray protons and helium near 100 GeV. Astropart. Phys. 18 : 487–500

    Article  ADS  Google Scholar 

  • DuVernois, M.A. et al. 2001. Cosmic-ray electrons and positrons from 1 to 100 GeV : Measurements with HEAT and their interpretation. Astrophys. J. 559 : 296–303

    Article  ADS  Google Scholar 

  • Dwyer, R. and P. Meyer. 1981. Proc. 17th Int. Conf. Cosm. Rays, Paris, Vol. 2, p. 54

  • Earl, J. 1961. Cloud-chamber observations of primary cosmic-ray electrons. Phys. Rev. Lett. 6 : 125–128

    Article  ADS  Google Scholar 

  • Ellsworth, R.W. et al. 1977. High-energy proton spectrum measurements. Astrophys. Space Sci. 52 : 415–427

    Article  ADS  Google Scholar 

  • Engelmann, J.J. et al. 1981. Proc. 17th Int. Cosm. Ray Conf., Paris, Vol. 9, p. 97

  • Engelmann, J.J. et al. 1990. Charge composition and energy-spectra of cosmic-ray nuclei for elements from Be to Ni – results from HEAO-3-C2. Astron. Astrophys. 233 : 96–111

    ADS  Google Scholar 

  • Fanselow, J.L. et al. 1969. Charge composition and energy spectrum of primary cosmic-ray electrons. Astrophys. J. 158 : 771–780

    Article  ADS  Google Scholar 

  • Fermi, E. 1949. On the Origin of the Cosmic Radiation. Phys. Rev. 75 : 1169–1174

    Article  ADS  MATH  Google Scholar 

  • Ficenec, D.J. et al. 1993. Proc. 23rd Int. Cosmic Ray Conf., Calgary, Vol. 1, p. 515

  • Fleischer, R.L. et al. 1967a. Tracks of heavy primary cosmic rays in meteorites. JGR 72 : 355–366

    Article  ADS  Google Scholar 

  • Fleischer, R.L. et al. 1967b. Tracks of cosmic rays in plastics. Science 155 : 187–189

    Article  ADS  Google Scholar 

  • Fowler, P.H. et al. 1967 Proc. Roy. Soc. Lond. A 301 : 39

    Article  ADS  Google Scholar 

  • Fowler, P.H. et al. 1979. Proc. 16th Int. Cosm. Ray Conf., Kyoto, Vol. 12, p. 338

  • Freier, P. et al. 1948a. Evidence for heavy nuclei in the primary cosmic radiation. Phys. Rev. 74 : 213–217

    Article  ADS  Google Scholar 

  • Freier, P. et al. 1948b. The heavy component of primary cosmic rays. Phys. Rev. 74 : 1818–1827

    Article  ADS  Google Scholar 

  • Gaisser, T.K. and R.K. Schaefer. 1997. Theoretical predictions for cosmic ray secondary antiprotons. Adv. Space Res. 19 : 775–780

    Article  ADS  Google Scholar 

  • Garcia-Munoz, M. and J.A. Simpson. 1979. Proc. 16th Int. Conf. Cosmic Rays, Kyoto, Vol. 1, p. 270

  • Garcia-Munoz, M.,G.M. Mason, and J.A. Simpson. 1973. Abundances of galactic cosmic-ray carbon, nitrogen, and oxygen and their astrophysical implications. Astrophys. J. 184 : 967–994

    Article  ADS  Google Scholar 

  • Garcia-Munoz, M., G.M. Mason and J.A. Simpson 1975a. Isotopic composition of galactic cosmic-ray lithium, beryllium, and boron. Astrophys. J. 201 : 145–148

    Article  ADS  Google Scholar 

  • Garcia-Munoz, M., G.M. Mason and J.A. Simpson. 1975b. Cosmic-ray age deduced from Be-10 abundance. Astrophys. J. 201 : 141–144

    Article  ADS  Google Scholar 

  • Ginzburg, V.L. and S. Syrovatskii. 1964. The Origin of Cosmic Rays. McMillan, New York

  • Golden, R.L. et al. 1979. Evidence for the existence of cosmic-ray anti-protons. Phys. Rev. Lett. 43 : 1196–1199

    Article  ADS  Google Scholar 

  • Golden, R.L. et al. 1996. Measurement of the positron to electron ratio in the cosmic rays above 5 GeV. Astrophys. J. 457 : L103–L106

    Article  ADS  Google Scholar 

  • Grigorov, N.L. et al. 1966. Some problems and perspective in cosmic-ray studies. Space Sci. Rev. 5 : 167–209

    Article  ADS  Google Scholar 

  • Grigorov, N.L. et al. 1970. Measurement of effective cross sections of inelastic interaction of protons with carbon and hydrogen nuclei in energy region 20–600 GeV in satellites proton-1, proton-2, and proton-3. Sov. J. Nucl. Phys. 11, 455 : 588

    Google Scholar 

  • Grigorov, N.L. et al. 1971a. Proc. 12th Int. Cosmic Ray Conf., Hobart, Vol. 5, p. 1746

  • Grigorov, N.L. et al. 1971b. Proc. 12th Int. Cosmic Ray Conf., Hobart, Vol. 5, p. 1752

  • Grigorov, N.L. et al. 1971c. Proc. 12th Int. Cosmic Ray Conf., Hobart, Vol. 5, p. 1760

  • Grimani, C. et al. 2002. Measurements of the absolute energy spectra of cosmic-ray positrons and electrons above 7 GeV. Astron. Astrophys. 392 : 287–294

    Article  ADS  Google Scholar 

  • Guzik, T.G. et al. 2004. The ATIC Long Duration Balloon project. Adv. Space Res. 33 : 1763–1770

    Article  ADS  Google Scholar 

  • Haino, S. et al. 2004. Measurements of primary and atmospheric cosmic-ray spectra with the BESS-TeV spectrometer. Phys. Lett. B 594 : 35–46

    Article  ADS  Google Scholar 

  • Hams, T. et al. 2004. Measurement of the abundance of radioactive Be-10 and other light isotopes in cosmic radiation up to 2 GeV per nucleon with the balloon-borne instrument ISOMAX. Astrophys. J. 611 : 892–905

    Article  ADS  Google Scholar 

  • Hartmann, G., D. Müller and T. Prince. 1977. High-energy cosmic-ray electrons – a new measurement using transition-radiation detectors. Phys. Rev. Lett. 38 : 1368–1372

    Article  ADS  Google Scholar 

  • Hess, V.F. 1912. Ueber Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Physik. Z. 13 : 1084–1091

    Google Scholar 

  • Higdon, J.C. and R.E. Lingenfelter. 2003. The superbubble origin of 22Ne in cosmic rays. Astrophys. J. 590 : 822–832

    Article  ADS  Google Scholar 

  • Hilberry, N. 1941. Extensive cosmic-ray showers and the energy distribution of primary cosmic rays. Phys. Rev. 60 : 1–9

    Article  ADS  Google Scholar 

  • Hulsizer, R.I. and B. Rossi. 1948. Search for electrons in the primary cosmic radiation. Phys. Rev. 73 : 1402–1403

    Article  ADS  Google Scholar 

  • Israel, M.H. et al. 2005. Isotopic composition of cosmic rays : Results from the cosmic ray isotope spectrometer on the ACE spacecraft. Nucl. Phys. A 758 : 201c–208c.

    Article  ADS  Google Scholar 

  • Ivanenko, I.P. et al. 1988. Energy-spectrum and charge composition of primary cosmic-rays with energy above 2 TeV. JETP Lett. 48 : 510–513

    ADS  Google Scholar 

  • Johnson, T.H. and J.C. Street. 1933. The variation of cosmic-ray intensities with azimuth on Mt. Washington, N.H. Phys. Rev. 43 : 381

    Google Scholar 

  • Juliusson, E., P. Meyer and D. Müller. 1972. Composition of cosmic-ray nuclei at high-energies. Phys. Rev. Lett. 29 : 445–448

    Article  ADS  Google Scholar 

  • Kobayashi, T. et al. 1999. Proc. 26th Int. Cosmic Ray Conference, Salt Lake City, Vol. 3, p. 61

  • L’Heureux, J. et al. 1990. A detector for cosmic-ray nuclei at very high-energies. NIM A 295 : 246–260

    Article  ADS  Google Scholar 

  • Lagage, P.O. and C.J. Cesarsky. 1983. The maximum energy of cosmic-rays accelerated by super-nova shocks. Astron. Astrophys. 125 : 249–257

    ADS  MATH  Google Scholar 

  • Lezniak, J.A. and W.R. Webber. 1978. Charge composition and energy-spectra of cosmic-ray nuclei from 3000 MeV per nucleon to 50 GeV per nucleon. Astrophys. J. 223 : 676–696

    Article  ADS  Google Scholar 

  • Link, J.T. et al. 2001. Proc. 27th Int. Cosm. Ray Conf., Hamburg, Vol. 6, p. 2143

  • Link, J.T. et al. 2003. Proc. 28th ICRC, Tsukuba, Vol. 4, p. 1781

  • Linsley, J. 1983. Proc. 18th Int. Cosmic Ray Conf., Bangalore, Vol. 12, p. 135

  • Lodders, K. 2003. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591 : 1220–1247

    Article  ADS  Google Scholar 

  • Lukasiak, A. et al. 1994a. The isotopic composition of cosmic-ray beryllium and its implication for the cosmic-ray’s age. Astrophys. J. 423 : 426–431

    Article  ADS  Google Scholar 

  • Lukasiak, A. et al. 1994b. Cosmic-ray isotopic composition of C, N, O, Ne, Mg, Si nuclei in the energy-range 50–200 MeV per nucleon measured by the voyager spacecraft during the solar minimum period. Astrophys. J. 426 : 366

    Article  ADS  Google Scholar 

  • Lukasiak, A., F. B. McDonald and W. R. Webber 1994c. Voyager measurements of the isotopic composition of cosmic-ray aluminum and implications for the propagation of cosmic-rays. Astrophys. J. 430 : L69–L72

    Article  ADS  Google Scholar 

  • Lukasiak, A. et al. 1997. Voyager measurements of the isotopic composition of Fe, Co and Ni nuclei – Implications for the nucleosynthesis and the acceleration of cosmic rays. Adv. Space Res. 19 : 747–750

    Article  ADS  Google Scholar 

  • Mayorov, A.G. et al. 2011. The search for antihelium in cosmic rays using data from the PAMELA experiment. Bull. Russ. Acad. Sci. Phys. 75 : 331–333

    Article  Google Scholar 

  • Meyer, J.P. 1985. Solar-stellar Outer atmospheres and energetic particles, and galactic cosmic rays. Astrophys. J. Suppl. 57 : 173

    Article  ADS  Google Scholar 

  • Meyer, P. and R. Vogt. 1961. Electrons in primary cosmic radiation. Phys. Rev. Lett. 6 : 193–196

    Article  ADS  Google Scholar 

  • Meyer, J.P., L. O’C. Drury and D.C. Ellison. 1997. Galactic cosmic rays from supernova remnants. A cosmic-ray composition controlled by volatility and mass-to-charge ratio. Astrophys. J. 487 : 182–196

    Article  ADS  Google Scholar 

  • Mitchell, J.W. et al. 1993. Proc. 23rd In. Cosmic Ray Conf., Calgary, Vol. 1, p. 519

  • Mitchell, J.W. et al. 1996. Measurement of 0.25–3.2 GeV antiprotons in the cosmic radiation. Phys. Rev. Lett. 76 : 3057–3060

    Article  ADS  Google Scholar 

  • Moiseev, A. et al. 1997. Cosmic-ray antiproton flux in the energy range form 200 to 600 MeV. Astrophys. J. 474 : 479–489

    Article  ADS  Google Scholar 

  • Müller, D. and K. Tang. 1987. Cosmic-ray positrons from 10 to 20 GeV – a balloon-borne measurement using the geomagnetic east-west asymmetry. Astrophys. J. 312 : 183–194

    Article  ADS  Google Scholar 

  • Müller, D. et al. 1991. Energy-spectra and composition of primary cosmic-rays. Astrophys. J. 374 : 356–365

    Article  Google Scholar 

  • Müller, D. 2004. Transition radiation detectors in particle astrophysics. Nucl. Instrum. Meth. Phys. Res. A 522 : 9–15

    Article  ADS  Google Scholar 

  • Nishimura, J. et al. 1980. Emulsion chamber observations of primary cosmic-ray electrons in the energy-range 30–1000 GeV. Astrophys. J. 238 : 394–409

    Article  ADS  Google Scholar 

  • de Nolfo, G.A. et al. 2009. Proc. 14th ICRC, Lodz, unpublished

  • Obermeier, A. et al. 2011. Energy spectra of primary and secondary cosmic-ray nuclei measured with tracer. Astrophys. J. 742 : 14

    Article  ADS  Google Scholar 

  • Obermeier, A. et al. 2012. The boron to carbon abundance ratio and galactic propagation of cosmic radiation. Astrophys. J. 752 : 69–75

    Article  ADS  Google Scholar 

  • Panasyuk, M.I. 2011. Cosmic ray physics in space : the role of Sergey Vernov’s scientific school. Astrophys. Space Sci. Trans. 7 : 151–156

    Article  ADS  Google Scholar 

  • Panov, A.D. et al. 2007. Proc. 30th ICRC, Merida, Vol. 2, p. 3

  • Pfotzer, G. 1936. Dreifachkoinzidenzen der Ultrastrahlung aus vertikaler Richtung in der Stratosphaere. Z. Phys. 102 : 23–58

    Article  ADS  Google Scholar 

  • Pomerantz, M.A. and F.L. Hereford. 1949. The detection of heavy particles in the primary cosmic radiation. Phys. Rev. 76 : 997–998

    Article  ADS  Google Scholar 

  • Powell, J.C., P.H. Fowler, and D.H. Perkins. 1959. The Study of Elementary Particles by the Photographic Method. Pergamon Press

  • Price, P.B. et al. 1968. High-resolution study of low-energy heavy cosmic rays with lexan track detectors. Phys. Rev. Lett. 21 : 630–633

    Article  ADS  Google Scholar 

  • Prince, T.A. 1979. Energy-spectrum of cosmic-ray electrons between 9 and 300 GeV. Astrophys. J. 227 : 676–693

    Article  ADS  Google Scholar 

  • Richtmyer, R.D. and E. Teller. 1949. On the origin of cosmic rays. Phys. Rev. 75 : 1729–1731

    Article  ADS  Google Scholar 

  • Rossi, B. 1964. Cosmic Rays. McGraw Hill

  • Ryan, M.J. et al. 1972. Cosmic-ray proton and helium spectra above 50 GeV. Phys. Rev. Lett. 28 : 985–988

    Article  ADS  Google Scholar 

  • Sasaki, M. et al. 2008. Search for antihelium : Progress with BESS. Adv. Space Res. 42 : 450–454

    Article  ADS  Google Scholar 

  • Schein, M., W.P. Jesse and E.O. Wollan. 1941. The nature of the primary cosmic radiation and the origin of the mesotron. Phys. Rev. 59 : 615–615

    Article  ADS  Google Scholar 

  • Seo, E.S. et al. 1991. Measurement of cosmic-ray proton and helium spectra during the 1987 solar minimum. Astrophys. J. 378 : 763–772

    Article  ADS  Google Scholar 

  • Silverberg, R.F., J.F. Ormes and V.K. Balasubrahmanian. 1973. Primary cosmic-ray electrons above 10 GeV – measurements using a thick detector. J. Geophys. Res. 78 : 7165–1773

    Article  ADS  Google Scholar 

  • Silverberg, R.F. 1976. Measurement of primary cosmic electron spectrum from 10 to about 250 GeV. J. Geophys. Res. 81 : 3944–3952

    Article  ADS  Google Scholar 

  • Simpson, J.A. 1983. Elemental and Isotopic Composition of the Galactic Cosmic Rays. Ann. Rev. Nucl. Part. Sci. 33 : 323–382

    Article  ADS  Google Scholar 

  • Simpson, J.A. et al. 1992. The Ulysses cosmic ray and solar particle investigation. Astron. Astrophys. Suppl. Ser. 92 : 365–399

    ADS  Google Scholar 

  • Smith, L.H. et al. 1972. Superconducting magnetic spectrometer for cosmic-ray nuclei. Rev. Sci. Instrum. 43 : 1–12

    Article  ADS  Google Scholar 

  • Smith, L.H. et al. 1973. Measurement of cosmic-ray rigidity spectra above 5 GV/c of elements from hydrogen to iron. Astrophys. J. 180 : 987–1010

    Article  ADS  Google Scholar 

  • Stone, E.C. et al. 1977. Cosmic-ray investigation for Voyager missions; energetic particle studies in the outer heliosphere and beyond. Space Sci. Rev. 21 : 355–376

    ADS  Google Scholar 

  • Stone, E.C. et al. 1998a. The cosmic-ray isotope spectrometer for the advanced composition explorer. Space Sci. Rev. 86 : 285–356

    Article  ADS  Google Scholar 

  • Stone, E.C. et al. 1998b. The solar isotope spectrometer for the advanced composition explorer. Space Sci. Rev. 86 : 357–408

    Article  ADS  Google Scholar 

  • Strong, A.W. and I.V. Moskalenko. 1998. Propagation of cosmic-ray nucleons in the galaxy. Astrophys. J. 509 : 212–228

    Article  ADS  Google Scholar 

  • Strong, A.W. et al. 2007. Cosmic-ray propagation and interactions in the galaxy. Ann. Rev. Nucl. Part. Sci. 57 : 285–327

    Article  ADS  Google Scholar 

  • Swordy, S.P. et al. 1990. Relative abundances of secondary and primary cosmic-rays at high-energies. Astrophys. J. 349 : 625–633

    Article  ADS  Google Scholar 

  • Tang, K.K. 1984. The energy-spectrum of electrons and cosmic-ray confinement – a new measurement and its interpretation. Astrophys. J. 278 : 881–892

    Article  ADS  Google Scholar 

  • Torii, S. et al. 2004. The CALET, CALorimetric Electron Telescope, on ISS/JEM Nucl. Phys. B (Proc. Suppl.) 134 : 23–30

    Article  ADS  Google Scholar 

  • Torii, S. et al. 2001. The energy spectrum of cosmic-ray electrons from 10 to 100 GeV observed with a highly granulated imaging calorimeter. Astrophys. J. 559 : 973–984

    Article  ADS  Google Scholar 

  • Turner, M.S. and F. Wilczek. 1990. Positron line radiation as a signature of particle dark matter in the halo. Phys. Rev. D 42 : 1001–1007

    Article  ADS  Google Scholar 

  • van Allen, J. and H.E. Tatel. 1948. The cosmic-ray counting rate of a single Geiger counter from ground level to 161 kilometers altitude. Phys. Rev. 73 : 245–251

    Article  ADS  Google Scholar 

  • Vernoff, S.N. 1934. On the study of cosmic rays at the great altitudes. Phys. Rev. 46 : 822–822

    Article  ADS  Google Scholar 

  • Weaver, B.A. and A.J. Westphal. 2002. Extended analysis of the trek ultraheavy collector Astrophys. J. 569 : 493–500

    Article  ADS  Google Scholar 

  • Webber, W.R. 1982. Charge abundances of cosmic-rays at their source. Astrophys. J. 255 : 329–340

    Article  ADS  Google Scholar 

  • Webber, W.R. 1997. New experimental data and what it tells us about the sources and acceleration of cosmic rays. Space Sci. Rev. 81 : 107–142

    Article  ADS  Google Scholar 

  • Wiedenbeck, M.E. and D.E. Greiner. 1980. A cosmic-ray age based on the abundance of Be-10. Astrophys. J. 239 : L139–L142

    Article  ADS  Google Scholar 

  • Wiedenbeck, M.E. et al. 1999. Constraints on the time delay between nucleosynthesis and cosmic-ray acceleration from observations of Ni-59 and Co-59. Astrophys. J. 523 : 61–64

    Article  ADS  Google Scholar 

  • Wiedenbeck, M.E. et al. 2007. An overview of the origin of galactic cosmic rays as inferred from observations of heavy ion composition and spectra. Space Sci. Rev. 130 : 415–429

    Article  ADS  Google Scholar 

  • Wu, J. on behalf of the PAMELA collaboration. 2011. Measurements of cosmic-ray antiprotons with PAMELA. Astrophys. Space Sci. Trans. 7 : 225–228

    Article  ADS  Google Scholar 

  • Yanasak, N.E. et al. 2001. Measurement of the secondary radionuclides Be-10, Al-26, Cl-36, Mn-54, and C-14 and implications for the galactic cosmic-ray age. Astrophys. J. 563 : 768–792

    Article  ADS  Google Scholar 

  • Yoon, Y.S. et al. 2011. Cosmic-ray proton and helium spectra from the first CREAM flight. Astrophys. J. 728 : 122

    Article  ADS  Google Scholar 

  • Yoshimura, K. et al. 1995. Observation of cosmic-ray antiprotons at energies below 500 MeV. Phys. Rev. Lett. 75 : 3792–3795

    Article  ADS  Google Scholar 

  • Young, J.S. et al. 1981. The elemental and isotopic composition of cosmic-rays – silicon to nickel. Astrophys. J. 246 : 1014–1030

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietrich Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, D. Direct observations of galactic cosmic rays. EPJ H 37, 413–458 (2012). https://doi.org/10.1140/epjh/e2012-30017-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2012-30017-2

Keywords

Navigation