Advertisement

What dielectric spectroscopy can tell us about supramolecular networks

  • Martin TressEmail author
  • Kunyue Xing
  • Sirui Ge
  • Pengfei Cao
  • Tomonori Saito
  • Alexei SokolovEmail author
Regular Article
  • 107 Downloads
Part of the following topical collections:
  1. Dielectric Spectroscopy Applied to Soft Matter

Abstract.

Polymers which can form supramolecular networks are a promising class of materials to provide highly sought-after properties such as self-healing, enhanced mechanical strength, super-stretchability as well as easy recyclability. However, due to the vast range of possible chemical structures it is very demanding to optimize these materials for the desired performance. Consequently, a detailed understanding of the molecular processes that govern the macroscopic properties is paramount to their technological application. Here we discuss some telechelic model systems with hydrogen-bonding end groups and how dielectric spectroscopy in combination with linear oscillatory shear rheology helped to understand the association mechanism on a molecular scale, and verify the model of bond-lifetime renormalization. Furthermore, we analyze a limitation of these H-bonding polymers, namely that there is a trade-off between high plateau modulus and long terminal relaxation time --both cannot be maximized at the same time. Finally, we show how more complex end groups phase separate from the main chain melt and thus lead to a more sophisticated rheological behavior which can overcome that limitation.

Graphical abstract

Keywords

Topical issue: Dielectric Spectroscopy Applied to Soft Matter 

References

  1. 1.
    R.P. Sijbesma, F.H. Beijer, L. Brunsveld, B.J.B. Folmer, J.H.K.K. Hirschberg, R.F.M. Lange, J.K.L. Lowe, E.W. Meijer, Science 278, 1601 (1997)ADSGoogle Scholar
  2. 2.
    P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Nature 451, 977 (2008)ADSGoogle Scholar
  3. 3.
    M. Burnworth, L. Tang, J.R. Kumpfer, A.J. Duncan, F.L. Beyer, G.L. Fiore, S.J. Rowan, C. Weder, Nature 472, 334 (2011)ADSGoogle Scholar
  4. 4.
    J. Kang, D. Miyajima, T. Mori, Y. Inoue, Y. Itoh, T. Aida, Science 347, 646 (2015)ADSGoogle Scholar
  5. 5.
    Y. Yanagisawa, Y. Nan, K. Okuro, T. Aida, Science 359, 72 (2018)ADSGoogle Scholar
  6. 6.
    E. Filippidi, T.R. Cristiani, C.D. Eisenbach, J.H. Waite, J.N. Israelachvili, B.K. Ahn, M.T. Valentine, Science 358, 502 (2017)ADSGoogle Scholar
  7. 7.
    R.J. Varley, S. Shen, S. van der Zwaag, Polymer 51, 679 (2010)Google Scholar
  8. 8.
    R.K. Bose, N. Hohlbein, S.J. Garcia, A.M. Schmidt, S. van der Zwaag, Phys. Chem. Chem. Phys. 17, 1697 (2015)Google Scholar
  9. 9.
    D.-D. Zhang, Y.-B. Ruan, B.-Q. Zhang, X. Qiao, G. Deng, Y. Chen, C.-Y. Liu, Polymer 120, 189 (2017)Google Scholar
  10. 10.
    A. Campanella, D. Döhler, W.H. Binder, Macromol. Rapid Commun. 39, 1700739 (2018)Google Scholar
  11. 11.
    K. Yu, A. Xin, Q. Wang, J. Mech. Phys. Solids 121, 409 (2018)ADSGoogle Scholar
  12. 12.
    P.-F. Cao, B. Li, T. Hong, J. Townsend, Z. Qiang, K. Xing, K.D. Vogiatzis, Y. Wang, J.W. Mays, A.P. Sokolov, T. Saito, Adv. Funct. Mater. 28, 1800741 (2018)Google Scholar
  13. 13.
    X. Hu, J. Zhou, M. Vatankhah-Varnosfaderani, W.F.M. Daniel, Q. Li, A.P. Zhushma, A.V. Dobrynin, S.S. Sheiko, Nat. Commun. 7, 12919 (2016)ADSGoogle Scholar
  14. 14.
    J. Li, J.A. Viveros, M.H. Wrue, M. Anthamatten, Adv. Mater. 19, 2851 (2007)Google Scholar
  15. 15.
    B.J.B. Folmer, R.P. Sijbesma, R.M. Versteegen, J.A.J. van der Rijt, E.W. Meijer, Adv. Mater. 12, 874 (2000)Google Scholar
  16. 16.
    K.E. Feldman, M.J. Kade, E.W. Meijer, C.J. Hawker, E.J. Kramer, Macromolecules 42, 9072 (2009)ADSGoogle Scholar
  17. 17.
    Z.P. Zhang, M.Z. Rong, M.Q. Zhang, Prog. Polym. Sci. 80, 39 (2018)Google Scholar
  18. 18.
    S.-L. Li, T. Xiao, C. Lin, L. Wang, Chem. Soc. Rev. 41, 5950 (2012)Google Scholar
  19. 19.
    A. Kulkarni, A. Lele, S. Sivaram, P.R. Rajamohanan, S. Velankar, A. Chatterji, Macromolecules 48, 6580 (2015)ADSGoogle Scholar
  20. 20.
    R.D. Lundberg, H.S. Makowski, L. Westerman, in Ions in Polymers (American Chemical Society, Washington DC, 1980)Google Scholar
  21. 21.
    A.J. Wilson, Soft Matter 3, 409 (2007)ADSGoogle Scholar
  22. 22.
    A.C. Legon, D.J. Millen, Acc. Chem. Res. 20, 39 (1987)Google Scholar
  23. 23.
    W.W. Cleland, P.A. Frey, J.A. Gerlt, J. Biol. Chem. 273, 25529 (1998)Google Scholar
  24. 24.
    J.-M. Lehn, Makromol. Chem. Macromol. Symp. 69, 1 (1993)Google Scholar
  25. 25.
    T. Yan, K. Schröter, F. Herbst, W.H. Binder, T. Thurn-Albrecht, Macromolecules 50, 2973 (2017)ADSGoogle Scholar
  26. 26.
    G. Broze, R. Jerome, Ph. Teyssie, C. Marco, J. Polym. Sci.: Polym. Phys. 21, 2205 (1983)ADSGoogle Scholar
  27. 27.
    F. Herbst, K. Schröter, I. Gunkel, S. Gröger, T. Thurn-Albrecht, J. Balbach, W.H. Binder, Macromolecules 43, 10006 (2010)ADSGoogle Scholar
  28. 28.
    J. Lacombe, C. Soulie-Ziakovic, Polym. Chem. 8, 5954 (2017)Google Scholar
  29. 29.
    E.A. Appel, R.A. Forster, A. Koutsioubas, C. Toprakcioglu, O.A. Scherman, Angew. Chem. 126, 10202 (2014)Google Scholar
  30. 30.
    J. Horrion, R. Jerome, Ph. Teyssie, C. Marco, C.E. Williams, Polymer 29, 1203 (1988)Google Scholar
  31. 31.
    F.J. Stadler, W. Pyckhout-Hintzen, J.-M. Schumers, C.-A. Fustin, J.-F. Gohy, C. Bailly, Macromolecules 42, 6181 (2009)ADSGoogle Scholar
  32. 32.
    D.J. Yarusso, S.L. Cooper, Macromolecules 16, 1871 (1983)ADSGoogle Scholar
  33. 33.
    C. Slusarczyk, A. Włochowicz, A. Gronowski, Z. Wojtczak, Polymer 29, 1581 (1988)Google Scholar
  34. 34.
    J. Ledent, F. Fontaine, H. Reynaers, R. Jerome, Polym. Bull. 14, 461 (1985)Google Scholar
  35. 35.
    W.J. Macknight, W.P. Taggart, R.S. Stein, J. Polym. Sci.: Polym. Symp. 45, 113 (1974)Google Scholar
  36. 36.
    G. Broze, R. Jerome, P. Teyssie, C. Marco, Macromolecules 16, 996 (1983)ADSGoogle Scholar
  37. 37.
    G. Broze, R. Jerome, P. Teyssie, C. Marco, Macromolecules 16, 1771 (1983)ADSGoogle Scholar
  38. 38.
    L.J. Fetters, W.W. Graessley, N. Hadjichristidis, A.D. Kiss, D.S. Pearson, L.B. Younghouse, Macromolecules 21, 1644 (1988)ADSGoogle Scholar
  39. 39.
    M. Müller, E.W. Fischer, F. Kremer, U. Seidel, R. Stadler, Colloid Polym. Sci. 273, 38 (1995)Google Scholar
  40. 40.
    M. Müller, R. Stadler, F. Kremer, G. Williams, Macromolecules 28, 6942 (1995)ADSGoogle Scholar
  41. 41.
    B.J. Gold, C.H. Hövelmann, C. Weiss, A. Radulescu, J. Allgaier, W. Pyckhout-Hintzen, A. Wischnewski, D. Richter, Polymer 87, 123 (2016)Google Scholar
  42. 42.
    W. Denissen, J.M. Winne, F.E. Du Prez, Chem. Sci. 7, 30 (2016)Google Scholar
  43. 43.
    D.J. Fortman, J.P. Brutman, G.X. De Hoe, R.L. Snyder, W.R. Dichtel, M.A. Hillmyer, ACS Sustain. Chem. Eng. 6, 11145 (2018)Google Scholar
  44. 44.
    B.J. Gold, C.H. Hövelmann, N. Lühmann, N.K. Szekely, W. Pyckhout-Hintzen, A. Wischnewski, D. Richter, ACS Macro Lett. 6, 73 (2017)Google Scholar
  45. 45.
    B.J. Gold, C.H. Hövelmann, N. Lühmann, W. Pyckhout-Hintzen, A. Wischnewski, D. Richter, J. Rheol. 61, 1211 (2017)ADSGoogle Scholar
  46. 46.
    A. Shabbir, I. Javakhishvili, S. Cerveny, S. Hvilsted, A.L. Skov, O. Hassager, N.J. Alvarez, Macromolecules 49, 3899 (2016)ADSGoogle Scholar
  47. 47.
    K. Xing, M. Tress, P. Cao, S. Cheng, T. Saito, V.N. Novikov, A.P. Sokolov, Soft Matter 14, 1235 (2018)ADSGoogle Scholar
  48. 48.
    K. Xing, M. Tress, P. Cao, F. Fan, S. Cheng, T. Saito, A.P. Sokolov, Macromolecules 49, 3138 (2016)ADSGoogle Scholar
  49. 49.
    H. Wagner, R. Richert, J. Phys. Chem. B 103, 4071 (1999)Google Scholar
  50. 50.
    S. Havriliak, S. Negami, Polymer 8, 161 (1967)Google Scholar
  51. 51.
    F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer, Berlin, Heidelberg, 2003)Google Scholar
  52. 52.
    M. Wübbenhorst, J. van Turnhout, J. Non-Cryst. Solids 40, 305 (2002)Google Scholar
  53. 53.
    H. Vogel, Phys. Z. 22, 645 (1921)Google Scholar
  54. 54.
    G.S. Fulcher, J. Am. Chem. Soc. 8, 339 (1925)Google Scholar
  55. 55.
    G. Tammann, W. Hesse, Z. Anorg. Allg. Chem. 156, 245 (1926)Google Scholar
  56. 56.
    Z. Zhang, Q. Chen, R.H. Colby, Soft Matter 14, 2961 (2018)ADSGoogle Scholar
  57. 57.
    H. Goldansaz, C.-A. Fustin, M. Wübbenhorst, E. van Ruymbeke, Macromolecules 49, 1890 (2016)ADSGoogle Scholar
  58. 58.
    Q. Chen, G.J. Tudryn, R.H. Colby, J. Rheol. 57, 1441 (2013)ADSGoogle Scholar
  59. 59.
    Y. Matsumiya, H. Watanabe, O. Urakawa, T. Inoue, Macromolecules 49, 7088 (2016)ADSGoogle Scholar
  60. 60.
    K.S. Gilroy, W.A. Phillips, Phil. Mag. B 13, 735 (1981)ADSGoogle Scholar
  61. 61.
    Y. Yanagisawa, Y. Nan, K. Okuro, T. Aida, Science 359, 72 (2018)ADSGoogle Scholar
  62. 62.
    B. Hartmann, G.F. Lee, J.D. Lee, J. Acoust. Soc. Am. 95, 226 (1994)ADSGoogle Scholar
  63. 63.
    T. Nicolai, G. Floudas, Macromolecules 31, 2578 (1998)ADSGoogle Scholar
  64. 64.
    F. Tanaka, S. Edwards, Macromolecules 25, 1516 (1992)ADSGoogle Scholar
  65. 65.
    F. Tanaka, S. Edwards, J. Non-Newton. Fluid Mech. 43, 247 (1992)Google Scholar
  66. 66.
    S. Ge, M. Tress, K. Xing, P.-F. Cao, T. Saito, A.P. Sokolov, unpublished (2019). Google Scholar
  67. 67.
    E.B. Stukalin, L.-H. Cai, N.A. Kumar, L. Leibler, M. Rubinstein, Macromolecules 46, 7525 (2013)ADSGoogle Scholar
  68. 68.
    J.H.K.K. Hirschberg, F.H. Beijer, H.A. van Aert, P.C.M.M. Magusin, R.P. Sijbesma, E.W. Meijer, Macromolecules 32, 2696 (1999)ADSGoogle Scholar
  69. 69.
    S. Chen, D. Döhler, W.H. Binder, Polymer 107, 466 (2016)Google Scholar
  70. 70.
    A. Jangizehia, S.R. Ghaffariana, G. Nikravana, S. Jamalpour, Thermochim. Acta 661, 34 (2018)Google Scholar
  71. 71.
    A.N. Semenov, M. Rubinstein, Macromolecules 35, 4821 (2002)ADSGoogle Scholar
  72. 72.
    L.M. Espinosa, S. Balog, C. Weder, ACS Macro Lett. 3, 540 (2014)Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Tennessee, KnoxvilleKnoxvilleUSA
  2. 2.Department of Materials ScienceUniversity of Tennessee, KnoxvilleKnoxvilleUSA
  3. 3.Oak Ridge National LaboratoryChemical Sciences DivisionOak RidgeUSA

Personalised recommendations