Advertisement

Experiments and modeling of nonlinear frequency response of oscillations of a sessile droplet subjected to horizontal vibrations

  • Amin Rahimzadeh
  • Talha Khan
  • Morteza EslamianEmail author
Regular Article

Abstract.

In this paper, we experimentally studied the response frequency of oscillations of a sessile water droplet, subjected to horizontal vibrations at varying excitation frequency (5-250 Hz and 40 kHz) and amplitude (0.015 mm to 0.5 mm for low frequencies and 600nm for ultrasonic frequency), as well as static contact angle of the glass substrate (\( 30^{\circ}\), \( 75^{\circ}\) , \( 90^{\circ}\), \( 115^{\circ}\)). The droplets were pinned during the experiments and non-axisymmetric oscillation modes were excited due to the horizontal vibrations. For the first time, we observed that at a sufficiently high vibration amplitude, when the excitation frequency is lower than the smallest natural frequency of the sessile droplet, the droplet oscillates at a response frequency multiple of the excitation frequency. At higher excitation frequencies up to several hundreds of Hz, the droplet oscillates nearly at the excitation frequency. At ultrasonic excitation frequency, however, the droplet cannot follow the excitations, since there is a physical limitation for forming infinite modes (infinite wavenumber) on the surface of a small droplet. We have modeled these behaviors with a nonlinear mass-spring-damper system by combining two established models: the Duffing and Van der Pol equations, in order to simulate both nonlinear damping and stiffness.

Graphical abstract

Keywords

Flowing matter: Nonlinear Physics and Mesoscale Modeling 

References

  1. 1.
    M. Eslamian, Coatings 4, 60 (2014)CrossRefGoogle Scholar
  2. 2.
    Z. Wang, J. Zhe, Lab Chip 11, 1280 (2011)CrossRefGoogle Scholar
  3. 3.
    S. Bansal, P. Sen, Langmuir 33, 11047 (2017)CrossRefGoogle Scholar
  4. 4.
    J. Whitehill, A. Neild, T.W. Ng, S. Martyn, J. Chong, Appl. Phys. Lett. 98, 133503 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    S. Daniel, M.K. Chaudhury, P.G. de Gennes, Langmuir 21, 4240 (2005)CrossRefGoogle Scholar
  6. 6.
    V. Palero, J. Lobera, P. Brunet, N. Andres, M.P. Arroyo, Exp. Fluids 54, 1568 (2013)CrossRefGoogle Scholar
  7. 7.
    M. Eslamian, F. Soltani-Kordshuli, J. Coat. Technol. Res. 15, 271 (2018)CrossRefGoogle Scholar
  8. 8.
    B. Vukasinovic, M.K. Smith, A.R.I. Glezer, J. Fluid Mech. 587, 395 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    A.J. Milne, B. Defez, M. Cabrerizo-Vilchez, A. Amirfazli, Adv. Colloid Interface Sci. 203, 22 (2014)CrossRefGoogle Scholar
  10. 10.
    H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, 1932)Google Scholar
  11. 11.
    A. Hemmerle, G. Froehlicher, V. Bergeron, T. Charitat, J. Farago, EPL 111, 24003 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    N. Yoshiyasu, K. Matsuda, R. Takaki, J. Phys. Soc. Jpn. 65, 2068 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    C.-T. Chang, S. Daniel, P.H. Steen, Phys. Rev. E 95, 033109 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    P. Brunet, J.H. Snoeijer, Eur. Phys. J. ST 192, 207 (2011)CrossRefGoogle Scholar
  15. 15.
    X. Noblin, A. Buguin, F. Brochard-Wyart, Eur. Phys. J. ST 166, 7 (2009)CrossRefGoogle Scholar
  16. 16.
    Z. Zhu, Z. Zhao, L. Lv, W. Chen, L. Dong, J. Appl. Fluid Mech. 11, 7 (2018)Google Scholar
  17. 17.
    M. Strani, F. Sabetta, J. Fluid Mech. 141, 233 (1984)ADSCrossRefGoogle Scholar
  18. 18.
    M. Chiba, S. Michiue, I.J. Katayama, Sound Vib. 331, 1908 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    D.V. Lyubimov, T.P. Lyubimova, S.V. Shklyaev, Phys. Fluids 18, 012101 (2006)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    X. Noblin, A. Buguin, F. Brochard-Wyart, Eur. Phys. J. E 14, 395 (2004)CrossRefGoogle Scholar
  21. 21.
    I.G. Currie, Fundamental Mechanics of Fluids, 4th edition (CRC Press, Boca Raton, Florida, 2013)Google Scholar
  22. 22.
    J.S. Sharp, D.J. Farmer, J. Kelly, Langmuir 27, 9367 (2011)CrossRefGoogle Scholar
  23. 23.
    J.S. Sharp, Soft Matter 8, 399 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    T. Kalmar-Nagy, B. Balachandran, in The Duffing Equation: Nonlinear Oscillators and their Behaviour, edited by I. Kovacic, M.J. Brennan (John Wiley & Sons, 2011)Google Scholar
  25. 25.
    L. Chen, E. Bonaccurso, P. Deng, H. Zhang, Phys. Rev. E 94, 063117 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    R.M. Manglik, M.A. Jog, S.K. Gande, V. Ravi, Phys. Fluids 25, 082112 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    S. Mettu, M.K. Chaudhury, Langmuir 24, 10833 (2008)CrossRefGoogle Scholar
  28. 28.
    S. Lin, B. Zhao, S. Zou, J. Guo, Z. Wei, L. Chen, J. Colloid Interface Sci. 516, 86 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    F. Celestini, R. Kofman, Phys. Rev. E 73, 041602 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    P. Deepu, S. Chowdhuri, S. Basu, Chem. Eng. Sci. 118, 9 (2014)CrossRefGoogle Scholar
  31. 31.
    A. Qi, L.Y. Yeo, J.R. Friend, Phys. Fluids 20, 074103 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    A. Rahimzadeh, M. Eslamian, Int. J. Heat Mass Transf. 114, 786 (2017)CrossRefGoogle Scholar
  33. 33.
    J. Friend, L.Y. Yeo, Rev. Mod. Phys. 83, 647 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    A. Rahimzadeh, M.R. Ahmadian-Yazdi, M. Eslamian, Fluid Dyn. Res. 50, 065510 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    N. Gholampour, D. Brian, M. Eslamian, Coatings 8, 337 (2018)CrossRefGoogle Scholar
  36. 36.
    P. Deepu, S. Basu, R. Kumar, Phys. Fluids 25, 082106 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    T. Khan, M. Eslamian, Phys. Fluids 31, 082106 (2019)ADSCrossRefGoogle Scholar
  38. 38.
    J. Miles, J. Fluid Mech. 222, 197 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (2nd edition) (Elsevier, 1987). Google Scholar
  40. 40.
    D.M. Henderson, J.W. Miles, J. Fluid Mech. 275, 285 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    B. van der Pol, London Edinb. Dublin Philos. Mag. J. Sci. 2, 978 (1926)CrossRefGoogle Scholar
  42. 42.
    B. Van Der Pol, J. Van Der Mark, Nature 120, 363 (1927)ADSCrossRefGoogle Scholar
  43. 43.
    M. Eslamian, Prog. Org. Coat. 113, 60 (2017)CrossRefGoogle Scholar
  44. 44.
    C.L. Shen, W.J. Xie, B. Wei, Phys. Rev. E 81, 046305 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Michigan - Shanghai Jiao Tong University Joint InstituteShanghaiChina

Personalised recommendations