Advertisement

Non-Markovian barrier crossing with two-time-scale memory is dominated by the faster memory component

  • Julian Kappler
  • Victor B. Hinrichsen
  • Roland R. NetzEmail author
Regular Article
  • 13 Downloads

Abstract.

We investigate non-Markovian barrier-crossing kinetics of a massive particle in one dimension in the presence of a memory function that is the sum of two exponentials with different memory times, \( \tau_{{1}}^{}\) and \( \tau_{{2}}^{}\) . Our Langevin simulations for the special case where both exponentials contribute equally to the total friction show that the barrier-crossing time becomes independent of the longer memory time if at least one of the two memory times is larger than the intrinsic diffusion time. When we associate memory effects with coupled degrees of freedom that are orthogonal to a one-dimensional reaction coordinate, this counterintuitive result shows that the faster orthogonal degrees of freedom dominate barrier-crossing kinetics in the non-Markovian limit and that the slower orthogonal degrees become negligible, quite contrary to the standard time-scale separation assumption and with important consequences for the proper setup of coarse-graining procedures in the non-Markovian case. By asymptotic matching and symmetry arguments, we construct a crossover formula for the barrier crossing time that is valid for general multi-exponential memory kernels. This formula can be used to estimate barrier-crossing times for general memory functions for high friction, i.e. in the overdamped regime, as well as for low friction, i.e. in the inertial regime. Typical examples where our results are important include protein folding in the high-friction limit and chemical reactions such as proton-transfer reactions in the low-friction limit.

Graphical abstract

Keywords

Flowing matter: Nonlinear Physics and Mesoscale Modeling 

References

  1. 1.
    H.A. Kramers, Physica 7, 284 (1940)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    D. Chandler, J. Stat. Phys. 42, 49 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    B.J. Berne, M. Borkovec, J.E. Straub, J. Phys. Chem. 92, 3711 (1988)CrossRefGoogle Scholar
  4. 4.
    P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    R. Best, G. Hummer, Phys. Rev. Lett. 96, 228104 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    R. Zwanzig, Phys. Rev. 124, 983 (1961)ADSCrossRefGoogle Scholar
  7. 7.
    H. Mori, Prog. Theor. Phys. 33, 423 (1965)ADSCrossRefGoogle Scholar
  8. 8.
    G. Jung, M. Hanke, F. Schmid, J. Chem. Theor. Comput. 13, 2481 (2017)CrossRefGoogle Scholar
  9. 9.
    G. Jung, M. Hanke, F. Schmid, Soft Matter 14, 9368 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    H. Meyer, T. Voigtmann, T. Schilling, J. Chem. Phys. 147, 214110 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    H. Meyer, T. Voigtmann, T. Schilling, J. Chem. Phys. 150, 174118 (2019)ADSCrossRefGoogle Scholar
  12. 12.
    R. Rey, E. Guardia, J. Phys. Chem. 96, 4712 (1992)CrossRefGoogle Scholar
  13. 13.
    R.G. Mullen, J.-E. Shea, B. Peters, J. Chem. Theor. Comput. 10, 659 (2014)CrossRefGoogle Scholar
  14. 14.
    R.O. Rosenberg, B.J. Berne, D. Chandler, Chem. Phys. Lett. 75, 162 (1980)ADSCrossRefGoogle Scholar
  15. 15.
    D. de Sancho, A. Sirur, R.B. Best, Nat. Commun. 5, 4307 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    J.O. Daldrop, J. Kappler, F.N. Brünig, R.R. Netz, Proc. Natl. Acad. Sci. U.S.A. 115, 5169 (2018)CrossRefGoogle Scholar
  17. 17.
    T.G. Mason, D.A. Weitz, Phys. Rev. Lett. 74, 1250 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    D. Lesnicki, R. Vuilleumier, A. Carof, B. Rotenberg, Phys. Rev. Lett. 116, 147804 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    J.O. Daldrop, B.G. Kowalik, R.R. Netz, Phys. Rev. X 7, 041065 (2017)Google Scholar
  20. 20.
    J. Berner, B. Müller, J.R. Gomez-Solano, M. Krüger, C. Bechinger, Nat. Commun. 9, 999 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    D. Selmeczi, S. Mosler, P.H. Hagedorn, N.B. Larsen, H. Flyvbjerg, Biophys. J. 89, 912 (2005)CrossRefGoogle Scholar
  22. 22.
    G. Wilemski, M. Fixman, J. Chem. Phys. 60, 878 (1974)ADSCrossRefGoogle Scholar
  23. 23.
    A. Szabo, K. Schulten, Z. Schulten, J. Chem. Phys. 72, 4350 (1980)ADSCrossRefGoogle Scholar
  24. 24.
    A. Dua, R. Adhikari, J. Stat. Mech.: Theor. Exp. 2011, P04017 (2011)CrossRefGoogle Scholar
  25. 25.
    J. Gowdy, M. Batchelor, I. Neelov, E. Paci, J. Phys. Chem. B 121, 9518 (2017)CrossRefGoogle Scholar
  26. 26.
    T. Guerin, O. Benichou, R. Voituriez, Nat. Chem. 4, 568 (2012)CrossRefGoogle Scholar
  27. 27.
    S.S. Plotkin, P.G. Wolynes, Phys. Rev. Lett. 80, 5015 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    A. Das, D.E. Makarov, J. Phys. Chem. B 122, 9049 (2018)CrossRefGoogle Scholar
  29. 29.
    R.F. Grote, J.T. Hynes, J. Chem. Phys. 73, 2715 (1980)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    B. Carmeli, A. Nitzan, Phys. Rev. Lett. 49, 423 (1982)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    J.E. Straub, M. Borkovec, B.J. Berne, J. Chem. Phys. 84, 1788 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    P. Talkner, H.-B. Braun, J. Chem. Phys. 88, 7537 (1988)ADSCrossRefGoogle Scholar
  33. 33.
    E. Pollak, H. Grabert, P. Hänggi, J. Chem. Phys. 91, 4073 (1989)ADSCrossRefGoogle Scholar
  34. 34.
    R. Ianconescu, E. Pollak, J. Chem. Phys. 143, 104104 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    S.C. Tucker, M.E. Tuckerman, B.J. Berne, E. Pollak, J. Chem. Phys. 95, 5809 (1991)ADSCrossRefGoogle Scholar
  36. 36.
    J. Kappler, J.O. Daldrop, F.N. Brünig, M.D. Boehle, R.R. Netz, J. Chem. Phys. 148, 014903 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    I.S. Tolokh, G.W.N. White, S. Goldman, C.G. Gray, Mol. Phys. 100, 2351 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    F. Gottwald, S. Karsten, S.D. Ivanov, O. Kühn, J. Chem. Phys. 142, 244110 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    S.H. Northrup, J.T. Hynes, J. Chem. Phys. 73, 2700 (1980)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    R. Zwanzig, J. Stat. Phys. 9, 215 (1973)ADSCrossRefGoogle Scholar
  41. 41.
    R. Baron, D. Trzesniak, A.H. de Vries, A. Elsener, S.J. Marrink, W.F. van Gunsteren, ChemPhysChem 8, 452 (2007)CrossRefGoogle Scholar
  42. 42.
    D.A. Potoyan, A. Savelyev, G.A. Papoian, WIREs Comput. Mol. Sci. 3, 69 (2013)CrossRefGoogle Scholar
  43. 43.
    D. Marx, M.E. Tuckerman, J. Hutter, M. Parrinello, Nature 397, 601 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    J.O. Daldrop, M. Saita, M. Heyden, V.A. Lorenz-Fonfria, J. Heberle, R.R. Netz, Nat. Commun. 9, 311 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    H.S. Chung, W.A. Eaton, Nature 502, 685 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    M. Laleman, E. Carlon, H. Orland, J. Chem. Phys. 147, 214103 (2017)ADSCrossRefGoogle Scholar
  47. 47.
    V.I. Melʼnikov, S.V. Meshkov, J. Chem. Phys. 85, 1018 (1986)ADSCrossRefGoogle Scholar
  48. 48.
    P. Hänggi, U. Weiss, Phys. Rev. A 29, 2265 (1984)ADSCrossRefGoogle Scholar
  49. 49.
    B. Carmeli, A. Nitzan, Phys. Rev. A 29, 1481 (1984)ADSCrossRefGoogle Scholar
  50. 50.
    J.E. Straub, M. Borkovec, B.J. Berne, J. Chem. Phys. 83, 3172 (1985)ADSCrossRefGoogle Scholar
  51. 51.
    H. Grabert, P. Schramm, G.-L. Ingold, Phys. Rep. 168, 115 (1988)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    J. Kappler, F. Noé, R.R. Netz, Phys. Rev. Lett. 122, 067801 (2019)ADSCrossRefGoogle Scholar
  53. 53.
    D. Marx, ChemPhysChem 7, 1848 (2006)CrossRefGoogle Scholar
  54. 54.
    P. Reimann, G.J. Schmid, P. Hänggi, Phys. Rev. E 60, R1 (1999)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Julian Kappler
    • 1
  • Victor B. Hinrichsen
    • 1
  • Roland R. Netz
    • 1
    Email author
  1. 1.Freie Universität BerlinFachbereich PhysikBerlinGermany

Personalised recommendations