Advertisement

Polymer matrix ferroelectric composites under pressure: Negative electric capacitance and glassy dynamics

  • Szymon StarzonekEmail author
  • Aleksandra Drozd-Rzoska
  • Sylwester J. Rzoska
  • Kena Zhang
  • Emilia Pawlikowska
  • Aleksandra Kȩdzierska-Sar
  • Mikolaj Szafran
  • Feng Gao
Open Access
Regular Article
  • 36 Downloads

Abstract.

This report presents the results of high-pressure and broadband dielectric spectroscopy studies in polyvinylidene difluoride (PVDF) and barium strontium titanate (BST) microparticles composites (BST/PVDF). It shows that the Arrhenius behaviour for the temperature-related dynamics under atmospheric pressure is coupled to Super-Arrhenius/Super-Barus isothermal pressure changes of the primary relaxation time. Following these results, an explanation of the unique behaviour of the BST/PVDF composite is proposed. Subsequently, it is shown that when approaching the GPa domain the negative electric capacitance phenomenon occurs.

Graphical abstract

Keywords

Soft Matter: Polymers and Polyelectrolytes 

Notes

References

  1. 1.
    K.L. Ngai, Relaxation and Diffusion in Complex Systems (Springer, Berlin, 2011)Google Scholar
  2. 2.
    J.R. Fried, Polymers Science and Technology (Prentice Hall, Boston, 2014)Google Scholar
  3. 3.
    J.M.G. Cowie, V. Arrighi, Polymers: Chemistry and Physics of Modern Materials (CRC, Boca Raton, 2007)Google Scholar
  4. 4.
    S. Starzonek, S.J. Rzoska, A. Drozd-Rzoska, S. Pawlus, J.-C. Martinez-Garcia, L. Kistersky, Soft Matter 11, 5554 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    F. Kremer, A. Schoenhalls Broad Band Dielectric Spectroscopy (Springer, Berlin, 2000)Google Scholar
  6. 6.
    S.J. Rzoska, A. Drozd-Rzoska, V. Mazur, Metastable Systems under Pressure (Springer, Berlin, 2010)Google Scholar
  7. 7.
    P.K. Mallick, Processing of Polymer Matrix Composites (CRC Press, Boca Raton, 2018)Google Scholar
  8. 8.
    S. Thomas, K. Joseph, S.K. Malhotra, K. Goda, M.S. Sreekala, Polymer Composites (Wiley-VCH, Berlin, 2010)Google Scholar
  9. 9.
    T. Hanemann, D.V. Szabó, Materials 3, 3468 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    E. Fukada, T. Furukawa, Ultrasonics 19, 31 (1981)CrossRefGoogle Scholar
  11. 11.
    K. Tashiro, K. Takano, M. Kobayashi, Y. Chatani, H. Tadakoro, Polymer 24, 199 (1983)CrossRefGoogle Scholar
  12. 12.
    A.J. Lovinger, D.D. Davis, R.E. Cais, J. Kometani, Macromolecules 19, 1491 (1986)ADSCrossRefGoogle Scholar
  13. 13.
    J. Kaszyńska, B. Hilczer, P. Biskupski, Polym. Bull. 68, 1121 (2012)CrossRefGoogle Scholar
  14. 14.
    V. Sencadas, S. Lanceros-Mendez, R. Sabater-Serra, A.A. Balado, J.L. Gomez Ribelles, Eur. Phys. J. E 35, 41 (2012)CrossRefGoogle Scholar
  15. 15.
    E. Ozkazanc, H.Y. Guney, T. Oskay, E. Tarcan, Appl. Polym. Sci. 109, 3878 (2008)CrossRefGoogle Scholar
  16. 16.
    E.N. Bunting, G.R. Shelton, A.S. Creamer, J. Res. Natl. Bur. Stand. 38, 337 (1947)CrossRefGoogle Scholar
  17. 17.
    A. Kukreti, A. Kumar, U.C. Naithani, Ind. J. Pure. Appl. Phys. 49, 126 (2011)Google Scholar
  18. 18.
    J. Li, D. Jin, L. Zhou, J. Cheng, Mater. Lett. 76, 1 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Starzonek, K. Zhang, A. Drozd-Rzoska, S.J. Rzoska, E. Pawlikowska, M. Szafran, F. Gao, Polivinylidene difluoride-based composite: unique glassy and pretransitional behaviour, to be published in Eur. Phys. J. B (2019)Google Scholar
  20. 20.
    L.M. Garten, M. Burch, A.S. Gupta, R. Haislmaier, V. Gopalan, E.C. Dickey, S. Trolier McKinstry, J. Am. Ceram. Soc. 99, 1645 (2016)CrossRefGoogle Scholar
  21. 21.
    A.M. Ionescu, Nat. Nanotechnol. 13, 7 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    S.J. Rzoska, Front. Mater. Glass Sci. 4, 33 (2017)CrossRefGoogle Scholar
  23. 23.
    P. Atkins, J. De Paula, Physical Chemistry for the Life Sciences (W. H. Freeman and Co., NY, 2018)Google Scholar
  24. 24.
    A. Drozd-Rzoska, S.J. Rzoska, Phys. Rev. E 65, 041701 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    A. Drozd-Rzoska, S.J. Rzoska, Phys. Rev. E 73, 041502 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    A. Drozd-Rzoska, S.J. Rzoska, S. Pawlus, Ll. J. Tamarit, Phys. Rev. B 73, 224205 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    J.C. Martinez-Garcia, S.J. Rzoska, A. Drozd-Rzoska, J. Martinez-Garcia, Nat. Commun. 4, 1823 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    C. Barus, Am. J. Sci. 45, 87 (1893)ADSCrossRefGoogle Scholar
  29. 29.
    H. Vogel, Phys. Z. 22, 645 (1921)Google Scholar
  30. 30.
    G.S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925)CrossRefGoogle Scholar
  31. 31.
    G. Tammann, J. Soc. Glass Technol. 9, 166 (1925)Google Scholar
  32. 32.
    R. Boehmer, K.L. Ngai, C.A. Angell, J.D. Plazek, J. Chem. Phys. 99, 4201 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    M. Paluch, S.J. Rzoska, J. Zioło, J. Phys.: Condens. Matt. 10, 4131 (1998)ADSGoogle Scholar
  34. 34.
    G.P. Johari, E.P. Whalley, Faraday Symp. Chem. Soc. 6, 23 (1972)CrossRefGoogle Scholar
  35. 35.
    M. Paluch, J. Zioło, S.J. Rzoska, Phys. Rev. E 56, 5764 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    C.A. Angell, Strong and fragile liquids, in Relaxations in Complex Systems, edited by K.L. Ngai, G.B. Wright (National Technical Information Service, U.S. Dept. of Commerce, Springfield, 1985)Google Scholar
  37. 37.
    G. Floudas, M. Paluch, A. Grzybowski, K. Ngai, Molecular Dynamics of Glass-Forming Systems: Effects of Pressure (Springer, Berlin, 2011)Google Scholar
  38. 38.
    A. Drozd-Rzoska, S.J. Rzoska, C.M. Roland, J. Phys.: Condens. Matt. 20, 244103 (2008)ADSGoogle Scholar
  39. 39.
    S.J. Rzoska, A. Drozd-Rzoska, S. Starzonek, Nonlinear Dielectric Effect in Critical Liquids, in Nonlinear Dielectric Spectroscopy, Springer Ser. Adv. Dielectr., edited by Ranko Richert (Springer, Berlin, 2018). Google Scholar
  40. 40.
    G. Catalan, D. Jimenez, A. Gruvermanm, Nat. Mater. 14, 137 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    A.I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S.R. Bakaul, R. Ramesh, S. Salahuddin, Nat. Mater. 14, 182 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    P. Zubko, J.C. Wojdel, M. Hadjimichael, S. Fernandez-Pena, A. Sene, I. Lukyanchuk, J.M. Triscone, J. Iñiguez, Nature 534, 524 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    T. Sluka, P. Mokry, N. Setter, Appl. Phys. Lett. 111, 152902 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    M. Si, Ch.-J. Su, C. Jiang, N.J. Conrad, H. Zhou, K.D. Maize, G. Qiu, Ch.-T. Wu, A. Shakouri, M.A. Alam, P.D. Ye, Nat. Nanotechnol. 13, 24 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    A.K. Saha, S. Datt, S.K. Gupta, J. Appl. Phys. 123, 105102 (2018)ADSCrossRefGoogle Scholar
  46. 46.
    E. Thoms, A. Grzybowski, S. Pawlus, M. Paluch, J. Phys. Chem. Lett. 9, 1783 (2018)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Szymon Starzonek
    • 1
    Email author
  • Aleksandra Drozd-Rzoska
    • 1
  • Sylwester J. Rzoska
    • 1
  • Kena Zhang
    • 2
  • Emilia Pawlikowska
    • 1
  • Aleksandra Kȩdzierska-Sar
    • 1
  • Mikolaj Szafran
    • 3
  • Feng Gao
    • 2
  1. 1.Institute of High Pressure Physics of the Polish Academy of SciencesWarsawPoland
  2. 2.State Key Laboratory of Solidification Processing, MIIT Key Laboratory of Radiation Detection Materials and Devices, NPU-QMUL Joint Research Institute of Advanced Materials and Structure, School of Material Science and EngineeringNorthwestern Polytechnical UniversityXi’anChina
  3. 3.Faculty of ChemistryWarsaw University of TechnologyWarsawPoland

Personalised recommendations