Advertisement

Branching of interfacial cracks of carbon nanotube layers at the air-water interface

  • Yongjian ZhangEmail author
  • Danna Yuan
  • Haoran Ma
  • Tao Wang
  • Duyang ZangEmail author
Regular Article
  • 8 Downloads
Part of the following topical collections:
  1. Branching Dynamics at the Mesoscopic Scale

Abstract.

We study the surfactant-induced fracture of carbon nanotube layers at the air-water interface. The interfacial cracks exhibit branched morphologies. The propagation velocity V of the cracks follows a power law as \( V\sim t^{-0.5}\) , which is independent of the surface coverage of the layers as well as the surfactant concentration. However, the crack morphology changes from lightning-like to flower-like with the increasing of SDS concentration. A higher surfactant concentration does not accelerate the crack propagation velocity, whereas it significantly enhances the crack areas due to the stronger interfacial compression effect. Our results may shed light on the understanding of branching dynamics of interfacial cracks for 2-dimensional viscoelastic systems.

Graphical abstract

Keywords

Topical issue: Branching Dynamics at the Mesoscopic Scale 

References

  1. 1.
    B.P. Binks, Langmuir 23, 6947 (2017)CrossRefGoogle Scholar
  2. 2.
    D. Quere, P. Aussillous, Proc. R. Soc. A: Math. Phys. Eng. Sci. 462, 973 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Iris B. Liu, N. Sharifi-Mood, Kathleen, K.J. Stebe, Annu. Rev. Condens. Matter Phys. 9, 283 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    P. Zuo, J. Liu, S. Li, Soft Matter 13, 2315 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    H. Konig, R. Hund, K. Zahn, G. Maret, Eur. Phys. J. E 18, 287 (2005)CrossRefGoogle Scholar
  6. 6.
    D.Y. Zang, E. Rio, D. Langevin, B. Wei, B.P. Binks, Eur. Phys. J. E 31, 125 (2010)CrossRefGoogle Scholar
  7. 7.
    A. Stocco, W. Drenckhan, E. Rio, D. Langevin, B.P. Binks, Soft Matter 5, 2215 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    A.C. Martinez, E. Rio, G. Delon, A. Saint-Jalmes, D. Langevin, B.P. Binks, Soft Matter 4, 1531 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    D.Y. Zang, P.S. Clegg, Soft Matter 9, 7042 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    R.V. Hooghten, V.E. Blair, A. Vananroye, A.B. Schofield, J. Vermant, J.H.J. Thijssen, Langmuir 33, 4107 (2017)CrossRefGoogle Scholar
  11. 11.
    B.P. Binks, Curr. Opin. Colloid Interface Sci. 7, 21 (2002)CrossRefGoogle Scholar
  12. 12.
    D. Langevin, Curr. Opin. Colloid Interface Sci. 3, 600 (1998)CrossRefGoogle Scholar
  13. 13.
    S. Razavi, K.D. Cao, B. Lin, K.Y. Lee, R.S. Tu, I. Kretzschmar, Langmuir 31, 7764 (2015)CrossRefGoogle Scholar
  14. 14.
    Hui Xu, Sonia Melle, Konstantin Golemanov, G. Fuller, Langmuir 21, 10016 (2005)CrossRefGoogle Scholar
  15. 15.
    D.Y. Zang, D. Langevin, B.P. Binks, B. Wei, Phys. Rev. E 81, 011604 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    M.M. Bandi, T. Tallinen, L. Mahadevan, EPL 96, 36008 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    D. Vella, H.Y. Kim, P. Aussillous, L. Mahadevan, Phys. Rev. Lett. 96, 178301 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    C. Spandagos, T.B. Goudoulas, P.F. Luckham, O.K. Matar, Langmuir 28, 8017 (2012)CrossRefGoogle Scholar
  19. 19.
    D.Y. Zang, E. Rio, G. Delon, D. Langevin, B. Wei, B.P. Bink, Mol. Phys. 109, 1057 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    G.L. Gaines, Insoluble Monolayers at Liquid-Gas Surfaces (John Wiley, New York, 1966)Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shaanxi Key Laboratory of Surface Engineering and RemanufacturingXi’an UniversityXi’anChina
  2. 2.Functional Soft Matter & Materials Group, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of ScienceNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations